Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 3fad74c
  • /
  • automl_predict.Rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:3a751a099af41d8672f47a193fcb16b53974855c
directory badge Iframe embedding
swh:1:dir:3fad74cf4e14c704f417db3a9b6d531c086afa22
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
automl_predict.Rd
\name{automl_predict}
\alias{automl_predict}
\title{automl_predict}
\description{
Predictions function, to apply a trained model on datas
}
\usage{
automl_predict(model, X, layoutputnum)
}
\arguments{
\item{model}{ model trained previously with \link{automl_train} or \link{automl_train_manual}}

\item{X}{ inputs matrix or data.frame (containing numerical values only)}

\item{layoutputnum}{ which layer number to output especially for auto encoding (default 0: no particular layer, the last one)}
}
\examples{
##REGRESSION (predict Sepal.Length given other parameters)
data(iris)
xmat <- as.matrix(cbind(iris[,2:4], as.numeric(iris$Species)))
ymat <- iris[,1]
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
 hpar = list(modexec = 'trainwpso', verbose = FALSE))
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))
colnames(res) <- c('actual', 'predict')
head(res)
#
\dontrun{
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat),
 lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
 hpar = list(modexec = 'trainwpso', verbose = FALSE))
res <- cbind(ymat, round(automl_predict(model = amlmodel, X = xmat)))
colnames(res) <- c(paste('act',lab2pred, sep = '_'),
 paste('pred',lab2pred, sep = '_'))
head(res)
}
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top