\name{numDeltaMethod} \Rdversion{1.1} \alias{numDeltaMethod} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Calculate numerical delta method for non-linear predictions. } \description{ Given a regression object and an independent prediction function (as a function of the coefficients), calculate the point estimate and standard errors } \usage{ numDeltaMethod(object, fun, gd=NULL, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{ A regression object with methods \code{coef} and \code{vcov}. } \item{fun}{ An independent prediction function with signature \code{function(coef, ...)}. } \item{gd}{ Specified gradients } \item{\dots}{ Other arguments passed to \code{fun}. } } \details{ A more user-friendly interface is provided by \code{predictnl}. } \value{ \item{Estimate}{Point estimates} \item{SE}{Standard errors} } %% \references{ %% %% ~put references to the literature/web site here ~ %% } %% \author{ %% %% ~~who you are~~ %% } %% \note{ %% %% ~~further notes~~ %% } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ See Also \code{\link{predictnl}}. } \examples{ ##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (object, fun, ...) { coef <- coef(object) est <- fun(coef, ...) Sigma <- vcov(object) gd <- grad(fun, coef, ...) se.est <- as.vector(sqrt(colSums(gd * (Sigma \%*\% gd)))) data.frame(Estimate = est, SE = se.est) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. %% \keyword{ ~kwd1 } %% \keyword{ ~kwd2 }% __ONLY ONE__ keyword per line