Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • b2278c7
  • /
  • include
  • /
  • pdssolve.hpp
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:3c51e8c32cf11354884f76be6d7dbbe6ee6cf70e
directory badge Iframe embedding
swh:1:dir:d61dcbe5d28fe7c8881a1368edd3d0fc5bbaad2e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
pdssolve.hpp
//
// Created by max on 19.08.22.
//

#ifndef PDS_PDSSOLVE_HPP
#define PDS_PDSSOLVE_HPP

#include "pds.hpp"
#include <queue>
#include <concepts>

namespace pds {
using BoundCallback = std::function<void(size_t lower, size_t upper, size_t extra)>;

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool exhaustiveSimpleReductions(PdsState& state, F callback = pds::unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = false;
        if (state.disableLowDegree()) { callback(state, "low_degree"); changed = true; }
        while (state.collapseLeaves()) { callback(state, "leaves"); changed = true; }
        while (state.collapseDegreeTwo()) { callback(state, "path"); changed = true; }
        if (state.reduceObservedNonZi()) { callback(state, "non_zi"); changed = true; }
        if (state.collapseObservedEdges()) { callback(state, "observed_edges"); changed = true; }
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool dominationReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool changed = false;
    if (state.disableObservationNeighborhood()) { callback(state, "observation_neighborhood"); changed = true; }
    if ((firstRun || changed) && state.activateNecessaryNodes()) { callback(state, "necessary_nodes"); changed = true; }
    return changed;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool exhaustiveReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = exhaustiveSimpleReductions(state, callback);
        if (firstRun || changed) changed |= dominationReductions(state, firstRun, callback);
        firstRun = false;
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool noNecessaryReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = exhaustiveSimpleReductions(state, callback);
        if (firstRun || changed) if(state.disableObservationNeighborhood()) {
            callback(state, "observation_neighborhood");
            changed = true;
        }
        firstRun = false;
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

namespace greedy_strategies {
std::optional<PdsState::Vertex> largestObservationNeighborhood(const PdsState &state);

std::optional<PdsState::Vertex> largestDegree(const PdsState &state);

std::optional<PdsState::Vertex> medianDegree(const PdsState &state);
}

template<
        std::invocable<const PdsState&> Strategy = std::optional<PdsState::Vertex>(const PdsState&),
        std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)
>
SolveResult solveGreedy(PdsState& state, bool applyReductions = true, Strategy strategy = greedy_strategies::largestObservationNeighborhood, F callback = unused) {
    size_t lower = state.numActive();
    while (!state.allObserved()) {
        if (applyReductions) {
            exhaustiveReductions(state, true, callback);
        }
        if (state.allObserved()) break;
        auto best = strategy(state);
        if (!best) break;
        state.setActive(*best);
    }
    return {lower, state.numActive(), SolveState::Heuristic};
}

SolveResult fastGreedy(PdsState &state, int useReductions = true);

SolveResult topDownGreedy(PdsState &state, bool activateAll = true, std::span<PdsState::Vertex> vertices = {});

using Bounds = std::pair<size_t, size_t>;
Bounds sensorBounds(const PdsState& state);

template< std::invocable<const PdsState&> Strategy = std::optional<PdsState::Vertex>(const PdsState&) >
SolveResult solveBranching(PdsState &state,
                    bool useReductions,
                    Strategy strategy = greedy_strategies::largestDegree) {
    if (useReductions) {
        exhaustiveReductions(state, true);
    }
    auto heuristic = state;
    fastGreedy(heuristic, true);
    auto upper = sensorBounds(heuristic).second;
    fmt::print("heuristic result: {}\n", upper);
    size_t lower = state.numActive();
    auto compare = [](const auto& first, const auto& second) { return first.first.first > second.first.first; };
    using Element = std::pair<Bounds, PowerGrid>;
    std::priority_queue<Element, std::vector<Element>, decltype(compare)> queue(compare);
    queue.push({sensorBounds(state), state.graph()});
    size_t explored = 0;
    using namespace std::chrono_literals;
    auto now = []() { return std::chrono::high_resolution_clock::now(); };
    auto sec = [](auto time) { return std::chrono::duration_cast<std::chrono::seconds>(time).count(); };
    auto printPeriod = 1s;
    auto previousPrint = now();
    auto start = previousPrint;
    while (!queue.empty()) {
        ++explored;
        PdsState top(std::move(queue.top().second));
        auto bounds = queue.top().first;
        queue.pop();
        if (bounds.first > upper) continue;
        lower = bounds.first;
        auto t = now();
        if (t - previousPrint > printPeriod) {
            fmt::print("explored {} nodes\t{}\t{}\t{}\t{}\t{}\t{}s\n", explored, lower, upper, bounds.first, bounds.second, top.allObserved(), sec(t - start));
            previousPrint = t;
        }
        upper = std::min(upper, bounds.second);
        if (bounds.first == bounds.second && top.allObserved()) {
            heuristic = top;
            fmt::print("incumbent solution: {}\t{}\n", bounds.first, top.allObserved());
        }
        auto best = strategy(top);
        if (!best) continue;
        auto activated = top;
        activated.setActive(*best);
        top.setInactive(*best);
        if (useReductions) {
            exhaustiveReductions(activated);
            exhaustiveReductions(top);
        }
        auto activatedBounds = sensorBounds(activated);
        auto disabledBounds = sensorBounds(top);
        if (activatedBounds.first < upper) {// && isFeasible(activated)) {// && activatedBounds.first <= activatedBounds.second
            upper = std::min(upper, activatedBounds.second);
            queue.template emplace(activatedBounds, std::move(activated.moveGraph()));
        }
        if (disabledBounds.first < upper) {// && isFeasible(top)) { // && disabledBounds.first <= disabledBounds.second
            upper = std::min(upper, disabledBounds.second);
            queue.emplace(disabledBounds, std::move(top.moveGraph()));
        }
    }
    fmt::print("finished after exploring {} nodes\t{}\t{}\n", explored, lower, upper);
    state = std::move(heuristic);
    fmt::print("solved by branching. result: {}\n", upper);
    return {lower, upper, SolveState::Optimal};
}

} //namespace pds

#endif //PDS_PDSSOLVE_HPP

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API