Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 711c3b2
  • /
  • src
  • /
  • technical
  • /
  • directional.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:3cd9ae817053d32ab137bd5cec824efd8cffc668
directory badge Iframe embedding
swh:1:dir:7696d39678e6db4ba664281c8ef17262a2d18a13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
directional.md
```@meta
CurrentModule = DataEnvelopmentAnalysis
```

# Directional Distance Function Models

*Chambers, Chung and Fare (1996)* introduced a measure of efficiency that projects observation $\left( {{\mathbf{x}_o,\mathbf{y}_{o}}} \right)$
in a pre-assigned  direction  $\mathbf{g}= {\left({-{\mathbf{g_{x}^-},\mathbf{g^{+}_y}}} \right)\neq\mathbf{0}_{m+s}}$, $\mathbf{g^{-}_{x}}\mathbb{\in R}^m$ and  $\mathbf{g^{+}_{y}}\mathbb{\in R}^s$, in a proportion $\beta$. The associated linear program is:

```math
\begin{aligned}
 & \underset{\beta ,\mathbf{\lambda }}{\mathop{\max }}\,\quad \quad \quad \quad \beta  \\
 & \text{subject}\ \text{to} \\
 & \quad \quad \quad \quad \quad \ X\lambda\le {{\mathbf{x}}_{o}} -\beta{{\mathbf{g^-_x}}} \\
 & \quad \quad \quad \quad \quad \  Y\mathbf{\lambda }\ge\ {{\mathbf{y}}_{o}}+\beta {{\mathbf{g^+_y}}}  \\
 & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}.\\  & \quad 
\end{aligned}
```

The measurement of technical efficiency assuming variable returns to scale, **VRS**, adds the following condition:
```math
\sum\nolimits_{j=1}^{n}\lambda_j=1
```

In this example we compute the directional distance function DEA model under constant returns to scale using ones as directions for both inputs and outputs:
```@example ddf
using DataEnvelopmentAnalysis

X = [5 13; 16 12; 16 26; 17 15; 18 14; 23 6; 25 10; 27 22; 37 14; 42 25; 5 17];

Y = [12; 14; 25; 26; 8; 9; 27; 30; 31; 26; 12];

deaddf(X, Y, Gx = :Ones, Gy = :Ones)
```

To compute the variable returns to scale model, we simply set the `rts` parameter to `:VRS`:
```@example ddf
deaddfvrs = deaddf(X, Y, Gx = :Ones, Gy = :Ones, rts = :VRS)
```

Estimated efficiency scores are returned with the `efficiency` function:
```@example ddf
efficiency(deaddfvrs)
```

The optimal peers, ``λ``, are returned with the `peers` function and are returned as a `DEAPeers` object:
```@example ddf
peers(deaddfvrs)
```

## Directional Distance Function Model in Multiplier Form

The dual to the directional distance function DEA model in envelopment form presented above is the multiplier form.

This example computes the directional distance function models DEA model in multiplier form under variable returns to scale:
```@example ddf
ddfonesm = deaddfm(X, Y, Gx = :Ones, Gy = :Ones, rts = :VRS)
```

Input and output virtual multipliers (shadow prices) are returned with the `multipliers` function:
```@example ddf
multipliers(ddfonesm, :X)
```

```@example ddf
multipliers(ddfonesm, :Y)
```

The value measuring the returns to scale is returned with the `rts` function:
```@example ddf
rts(ddfonesm)
```

### deaddf Function Documentation

```@docs
deaddf
deaddfm
```

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top