tensor_decomposition.rst
Tensor decomposition
====================
In this tutorial we will go over how to perform tensor decomposition.
Refer to [1]_ for more information on tensor decomposition.
CANDECOMP-PARAFAC
-----------------
First, let's create a second order tensor that is zero everywhere except in a swiss shape that is one.
.. code-block::python
>>> import numpy as np
>>> import tensorly as tl
>>> tensor = np.array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
We will now apply a rank-2 CANDECOMP-PARAFAC (:func:`tensorly.decomposition.parafac`) decomposition on `tensor`
to decompose this into a kruskal tensor.
A Parafac decompositions expresses the tensor as a kruskal tensor that can be represented as a list of factors (matrices).
The :func:`parafac` function therefore returns a list of factors.
.. code::
>>> from tensorly.decomposition import parafac
>>> factors = parafac(tensor, rank=2)
>>> len(factors)
2
>>> [f.shape for f in factors]
[(12, 2), (12, 2)]
From this **kruskal tensor** (presented as a list of matrices) you can reconstruct a full tensor:
.. code::
>>> print(tl.kruskal_to_tensor(factors))
[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
References
----------
.. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.