Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:4e3e7077647a709f15b8c1b32ce7100175d0580b
  • Code
  • Branches (2)
  • Releases (15)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • refs/tags/0.6.0
    • 0.5.1
    • 0.5.0
    • 0.4.5
    • 0.4.4
    • 0.4.3
    • 0.4.2
    • 0.4.1
    • 0.4.0
    • 0.3.0
    • 0.2.0
    • 0.1.6
    • 0.1.5
    • 0.1.4
    • 0.1.3
    • 0.1.2
  • d14115e
  • /
  • README.rst
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
  • release
content badge Iframe embedding
swh:1:cnt:3dc500549f165141e741393920365213e4178f20
directory badge Iframe embedding
swh:1:dir:d14115e93472b6d9388f7da2ff4695926a618d77
revision badge
swh:1:rev:c729db708aa5d9f6126114b5c6443ac410c111bf
snapshot badge
swh:1:snp:4e3e7077647a709f15b8c1b32ce7100175d0580b
release badge
swh:1:rel:e57923bb710c0c1d8ecde9a19289a5e3a5518f9f
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
  • release
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: c729db708aa5d9f6126114b5c6443ac410c111bf authored by Jean Kossaifi on 01 May 2018, 10:58:45 UTC
Add nose as a dependency
Tip revision: c729db7
README.rst
.. raw:: html

    <p align="center"><img width="35%" src="http://tensorly.org/stable/_static/TensorLy_logo.png" /></p>
    
    <p align="center">
        <a href="https://badge.fury.io/py/tensorly" target=blank>
            <img src="https://badge.fury.io/py/tensorly.svg"
        </a>
        <a href="https://anaconda.org/tensorly/tensorly" target=blank>
            <img src="https://anaconda.org/tensorly/tensorly/badges/version.svg" 
        </a>
        <a href="https://travis-ci.org/tensorly/tensorly" target=blank>
            <img src="https://travis-ci.org/tensorly/tensorly.svg?branch=master" 
        </a>
        <a href="https://coveralls.io/github/tensorly/tensorly?branch=master" target=blank>
            <img src="https://coveralls.io/repos/github/tensorly/tensorly/badge.svg?branch=master" 
        </a>
        <a href="https://gitter.im/tensorly/tensorly?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge" target=blank>
            <img src="https://badges.gitter.im/tensorly/tensorly.svg"
        </a>
    </p>
    
\ 

========
TensorLy
========


TensorLy is a Python library that aims at making tensor learning simple and accessible. It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, MXNet, PyTorch, TensorFlow or CuPy, and run methods at scale on CPU or GPU.

- **Website:** http://tensorly.org
- **Source-code:**  https://github.com/tensorly/tensorly
- **Jupyter Notebooks:** https://github.com/JeanKossaifi/tensorly-notebooks

----------------------------

Installing TensorLy
===================

The only pre-requisite is to have **Python 3** installed. The easiest way is via the `Anaconda distribution <https://www.anaconda.com/download/>`_.

+-------------------------------------------+---------------------------------------------------+
|      **With pip** (recommended)           |         **With conda**                            |
+-------------------------------------------+---------------------------------------------------+
|                                           |                                                   |
| .. code::                                 | .. code::                                         |
|                                           |                                                   |
|   pip install -U tensorly                 |   conda install -c tensorly tensorly              |
|                                           |                                                   |
|                                           |                                                   |
+-------------------------------------------+---------------------------------------------------+
|                               **Development (from git)**                                      |
+-------------------------------------------+---------------------------------------------------+
|                                                                                               |
|          .. code::                                                                            |
|                                                                                               |
|             # clone the repository                                                            |
|             git clone https://github.com/tensorly/tensorly                                    |
|             cd tensorly                                                                       |
|             # Install in editable mode with `-e` or, equivalently, `--editable`               |
|             pip install -e .                                                                  |
|                                                                                               |
+-----------------------------------------------------------------------------------------------+  
 
**Note:** TensorLy depends on NumPy by default. If you want to use the MXNet or PyTorch backends, you will need to install these packages separately.

For detailed instruction, please see the `documentation <http://tensorly.org/dev/installation.html>`_.

--------------------------

Running the tests
=================

Testing and documentation are an essential part of this package and all functions come with uni-tests and documentation.

The tests are ran using the `pytest` package (though you can also use `nose`). 
First install `pytest`::

    pip install pytest
    
Then to run the test, simply run, in the terminal:

.. code::

   pytest -v tensorly
   
Alternatively, you can specify for which backend you wish to run the tests:

.. code::
   
   TENSORLY_BACKEND='numpy' pytest -v tensorly
  
------------------

Quickstart
==========

Create a small third order tensor of size 3 x 4 x 2 and perform simple operations on it:

.. code:: python

   import tensorly as tl
   import numpy as np


   tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)))
   unfolded = tl.unfold(tensor, mode=0)
   tl.fold(unfolded, mode=0, shape=tensor.shape)


Applying tensor decomposition is easy:

.. code:: python

   from tensorly.decomposition import tucker
   # Apply Tucker decomposition 
   core, factors = tucker(tensor, rank=[2, 2, 2])
   # Reconstruct the full tensor from the decomposed form
   tl.tucker_to_tensor(core, factors) 

Changing the backend to perform computation on GPU for instance. Note that using MXNet, PyTorch, TensorFlow or CuPy requires to have installed them first. For instance, after setting the backend to PyTorch, all the computation is done by PyTorch, and tensors can be created on GPU:

.. code:: python

   tl.set_backend('pytorch') # Or 'mxnet', 'numpy', 'tensorflow' or 'cupy'
   
   import torch
   tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)), dtype=torch.cuda.FloatTensor)
   type(tensor) # torch.cuda.FloatTensor

For more information on getting started, checkout the `user-guide <http://tensorly.org/dev/user_guide/index.html>`_  and for a detailed reference of the functions and their documentation, refer to
the `API <http://tensorly.org/dev/modules/api.html>`_   

If you see a bug, open an `issue <https://github.com/tensorly/tensorly/issues>`_, or better yet, a `pull-request <https://github.com/tensorly/tensorly/pulls>`_!

-------------

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top