Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:3e3bbb4645f2cdb816d42e7eef8ed7a9c05debe5

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#!/usr/bin/env python3

"""
@ Lina Teichmann

    INPUTS: 
    call from command line with following inputs: 
        -bids_dir

    OUTPUTS:
    Calculates and plots noise ceilings based on the 200 repeat images for all sensors and each sensor group

    NOTES:
    If it doesn't exist, the script makes a figures folder in the BIDS derivatives folder
  
"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import mne,os
from scipy.stats import zscore

#*****************************#
### PARAMETERS ###
#*****************************#
n_participants              = 4
n_sessions                  = 12
n_images                    = 200
names                       = ['O','T','P','F','C']
labs                        = ['Occipital','Temporal','Parietal','Frontal','Central']
colors                      = ['mediumseagreen','steelblue','goldenrod','indianred','grey']
plt.rcParams['font.size']   = '16'
plt.rcParams['font.family'] = 'Helvetica'

#*****************************#
### HELPER FUNCTIONS ###
#*****************************#
def load_epochs(preproc_dir,all_epochs = []):
    for p in range(1,n_participants+1):
        epochs = mne.read_epochs(f'{preproc_dir}/preprocessed_P{str(p)}-epo.fif', preload=False)
        all_epochs.append(epochs)
    return all_epochs

def kknc(data: np.ndarray, n: int or None = None):
    """
    Calculate the noise ceiling reported in the NSD paper (Allen et al., 2021)
    Arguments:
        data: np.ndarray
            Should be shape (ntargets, nrepetitions, nobservations)
        n: int or None
            Number of trials averaged to calculate the noise ceiling. If None, n will be the number of repetitions.
    returns:
        nc: np.ndarray of shape (ntargets)
            Noise ceiling without considering trial averaging.
        ncav: np.ndarray of shape (ntargets)
            Noise ceiling considering all trials were averaged.
    """
    if not n:
        n = data.shape[-2]
    normalized = zscore(data, axis=-1)
    noisesd = np.sqrt(np.mean(np.var(normalized, axis=-2, ddof=1), axis=-1))
    sigsd = np.sqrt(np.clip(1 - noisesd ** 2, 0., None))
    ncsnr = sigsd / noisesd
    nc = 100 * ((ncsnr ** 2) / ((ncsnr ** 2) + (1 / n)))
    return nc

def calculate_noise_ceiling(all_epochs,all_nc = []):
    n_time = len(all_epochs[0].times)
    for p in range(n_participants):
        n_channels = len(all_epochs[p].ch_names)

        #  load data
        epochs = all_epochs[p]
        # select repetition trials only and load epoched data into memory
        epochs_rep = epochs[(epochs.metadata['trial_type']=='test')]
        epochs_rep.load_data()

        # select session data and sort based on category number
        res_mat=np.empty([n_channels,n_sessions,n_images,n_time])
        for sess in range(n_sessions):
            epochs_curr = epochs_rep[epochs_rep.metadata['session_nr']==sess+1]
            sort_order = np.argsort(epochs_curr.metadata['things_category_nr'])
            epochs_curr=epochs_curr[sort_order]
            epochs_curr = np.transpose(epochs_curr._data, (1,0,2))

            res_mat[:,sess,:,:] = epochs_curr

        # run noise ceiling
        nc = np.empty([n_channels,n_time])
        for t in range(n_time):
            dat = res_mat[:,:,:,t]
            nc[:,t] = kknc(data=dat,n=n_sessions)
        all_nc.append(nc)
    return all_nc

def make_supplementary_plot(all_epochs,fig_dir):
    plt.close('all')
    fig = plt.figure(num=2,figsize = (12,8))
    gs1 = gridspec.GridSpec(n_participants+1, len(names))
    gs1.update(wspace=0.2, hspace=0.2)
    ctf_layout = mne.find_layout(all_epochs[1].info)
    counter = 0
    for i,n in enumerate(names):
        for p in range(n_participants):
            ax = fig.add_subplot(gs1[counter])
            counter+=1
            ax.clear()
            picks_epochs = np.where([s[2]==n for s in all_epochs[p].ch_names])[0]
            picks = np.where([i[2]==n for i in ctf_layout.names])[0]
            [ax.plot(all_epochs[p].times*1000,ii,color=colors[p],label=labs[i],lw=0.1,alpha=0.2) for ii in all_nc[p][picks_epochs,:]]
            ax.plot(all_epochs[p].times*1000,np.mean(all_nc[p][picks_epochs,:],axis=0),color=colors[p],label=labs[i],lw=1.5)
            ax.set_ylim([0,100])

            if i ==0:
                ax.set_title('M' + str(p+1))
                
            if i < len(names)-1:
                plt.setp(ax.get_xticklabels(), visible=False)
            else:
                ax.set_xlabel('time (ms)')

            if p == 0:
                plt.setp(ax.get_yticklabels(), visible=True)
                ax.set_ylabel(labs[i])
            else: 
                plt.setp(ax.get_yticklabels(), visible=False)
            ax.spines['right'].set_visible(False)
            ax.spines['top'].set_visible(False)

            if i == 2 and p == 0:
                ax.set_ylabel('Explained Variance (%)\n' + labs[i])

        #  plot sensor locations
        ax2 = fig.add_subplot(gs1[counter])
        counter+=1
        ax2.plot(ctf_layout.pos[:,0],ctf_layout.pos[:,1],color='gainsboro',marker='.',linestyle='',markersize=3)
        ax2.plot(ctf_layout.pos[picks,0],ctf_layout.pos[picks,1],color='grey',marker='.',linestyle='',markersize=3)
        ax2.axis('equal')
        ax2.axis('off')
    fig.savefig(f'{fig_dir}/data_quality-noiseceiling_all.pdf')

def make_main_plot(all_epochs,all_nc):
    plt.close('all')
    fig = plt.figure(num=1,figsize = (12,3))
    gs1 = gridspec.GridSpec(1,len(names),wspace=0.1,)
    ctf_layout = mne.find_layout(all_epochs[1].info)

    for i,n in enumerate(names):
        ax = fig.add_subplot(gs1[i])

        # plot niose ceilings
        picks_epochs = [np.where([s[2]==n for s in all_epochs[p].ch_names])[0] for p in range(n_participants)]
        picks = np.where([i[2]==n for i in ctf_layout.names])[0]
        [ax.plot(all_epochs[p].times*1000,np.mean(all_nc[p][picks_epochs[p],:],axis=0),color=colors[p],label='M'+str(p+1),lw=2) for p in range(n_participants)]

        ax.set_ylim([0,90])
        ax.set_xlim([all_epochs[1].times[0]*1000,all_epochs[1].times[len(all_epochs[1].times)-1]*1000])
        ax.spines['right'].set_visible(False)
        ax.spines['top'].set_visible(False)
        if i == len(names)-1:
            plt.legend(frameon=False, bbox_to_anchor=(1, 0.5))
        ax.set_xlabel('time (ms)')
        if  i ==0: 
            ax.set_ylabel('Explained variance (%)')
        else: 
            plt.setp(ax.get_yticklabels(), visible=False)

        #  plot sensor locations
        ax2 = ax.inset_axes([0.55, 0.55, 0.5, 0.5])
        ax2.plot(ctf_layout.pos[:,0],ctf_layout.pos[:,1],color='darkgrey',marker='.',linestyle='',markersize=2)
        ax2.plot(ctf_layout.pos[picks,0],ctf_layout.pos[picks,1],color='k',marker='.',linestyle='',markersize=2)
        ax2.axis('equal')
        ax2.axis('off')
        ax2.set_title(labs[i],y=0.8,fontsize=14)

    fig.savefig(f'{fig_dir}/data_quality-noiseceiling_avgd.pdf')



#*****************************#
### COMMAND LINE INPUTS ###
#*****************************#
if __name__=='__main__':
    import argparse
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-bids_dir",
        required=True,
        help='path to bids root',
    )

    args = parser.parse_args()
    bids_dir                    = args.bids_dir
    preproc_dir                 = f'{bids_dir}/derivatives/preprocessed/'
    sourcedata_dir              = f'{bids_dir}/sourcedata/'
    fig_dir                      = f'{bids_dir}/derivatives/figures/'
    if not os.path.exists(fig_dir):
        os.makedirs(fig_dir)

    ####### Run ########
    all_epochs = load_epochs(preproc_dir)
    all_nc = calculate_noise_ceiling(all_epochs)
    make_supplementary_plot(all_epochs,fig_dir)
    make_main_plot(all_epochs,all_nc)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API