Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/coke6162/B2_SINE_enhancers
27 May 2023, 15:55:35 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • 709eaa23c1c245c9485cdeeacaf73aa18811e9e7
    No releases to show
  • d0d0b9a
  • /
  • README.md
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:3e884216f1b219080eac5400e84244dadb4bb018
origin badgedirectory badge Iframe embedding
swh:1:dir:d0d0b9aaac2583008b15ebb6f3e24b39ad1365e2
origin badgerevision badge
swh:1:rev:709eaa23c1c245c9485cdeeacaf73aa18811e9e7
origin badgesnapshot badge
swh:1:snp:c0fc443a11c562f64bc313d4db373346013605a6
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 709eaa23c1c245c9485cdeeacaf73aa18811e9e7 authored by coke6162 on 24 February 2023, 19:54:18 UTC
updated to clarify Qiao vs McCann
Tip revision: 709eaa2
README.md
# Co-option of B2 SINE elements as interferon-inducible enhancers in mouse

## Data availability:
All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression Omnibus (GEO) with accession number [GSE202574](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE202574).

## Publicly available data used:
List of publicly available data used in this study:
* [Piccolo, V., Curina, A., Genua, M. et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol 18(5), 530–540 (2017).](https://doi.org/10.1038/ni.3710) RNA-seq & ChIP-seq (GSE84520)
* [Platanitis, E., Demiroz, D., Schneller, A. et al. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat Commun 10(1), 2921 (2019).](https://doi.org/10.1038/s41590-018-0184-1) RNA-seq & ChIP-seq (GSE115435)
* [Cuartero, S., Weiss, F.D., Dharmalingam, G. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol 19(9), 932–941 (2018).](https://www.nature.com/articles/s41590-018-0184-1) RAD21 ChIP-seq (SRR6492207)
* [Gualdrini, F., Polletti, S., Simonatto, M., et al. H3K9 trimethylation in active chromatin restricts the usage of functional CTCF sites in SINE B2 repeats. Genes Dev 36(7-8), 414-432 (2022).](https://doi.org/10.1101%2Fgad.349282.121) CTCF ChIP-seq (SRR17090500, SRR17090494)
* [Platanitis, E., Gruener, S., Ravi Sundar Jose Geetha, A., et al. Interferons reshape the 3D conformation and accessibility of macrophage chromatin. iScience 25(3), (2022).](https://doi.org/10.1016/j.isci.2022.103840) ATAC-seq and Hi-C (PRJNA694816)
* [Qiao, Y., Kang, K., Giannopoulou, E., et al. IFN-γ Induces Histone 3 Lysine 27 Trimethylation at a Small Subset of Promoters to Stably Silence Gene Expression in Human Macrophages. Cell Rep. 16(12), 3121-3129 (2016).](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079287/) Human RNA-seq (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84692)

## UCSC Genome Browser Session:
bigWig files for all samples analyzed in this study may be visualized on the UCSC Genome Browser [here](https://genome.ucsc.edu/s/coke6162/B2_SINE_enhancers_Horton_et_al).

## Programs used:
List of programs used for all analyses:
* BBMap v38.05 (https://jgi.doe.gov/data-and-tools/bbtools/)
* FastQC v0.11.8 (https://github.com/s-andrews/FastQC)
* MultiQC v1.7 (https://github.com/ewels/MultiQC)
* HISAT2 v2.1.0 (https://github.com/DaehwanKimLab/hisat2)
* Samtools v1.14 (http://www.htslib.org/)
* Subread v1.6.2 (http://subread.sourceforge.net/)
* DESeq2 v1.26.0 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html)
* TEtranscripts v2.1.4 (https://github.com/mhammell-laboratory/TEtranscripts)
* MACS2 v2.1.1 (https://pypi.org/project/MACS2/)
* BWA v0.7.15 (https://github.com/lh3/bwa)
* Picard v2.6.0 (https://broadinstitute.github.io/picard/)
* MEME Suite v5.4.1 (https://meme-suite.org/meme/)
* Singularity v3.1.1 (https://github.com/hpcng/singularity)
* deepTools v3.5.1 (https://deeptools.readthedocs.io/en/develop/index.html)
* bedtools v2.28.0 (http://bedtools.readthedocs.io/en/latest/)
* GIGGLE v0.6.3 (https://github.com/ryanlayer/giggle)
* FIMO v5.4.1 (https://meme-suite.org/meme/)
* bedGraphToBigWig v4 (http://hgdownload.soe.ucsc.edu/downloads.html#source_downloads)
* Bowtie2 v2.2.9 (https://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
* Cufflinks v2.2.1 (http://cole-trapnell-lab.github.io/cufflinks/)
* Stringtie v1.3.3b (https://ccb.jhu.edu/software/stringtie/)
* Salmon v1.9.0 (https://combine-lab.github.io/salmon/)
* Pairix v0.3.7 (https://github.com/4dn-dcic/pairix)
* Juicer v1.6 (https://github.com/aidenlab/juicer)
* Activity-by-Contact Model v0.2.2 (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction)

## Regulatory activity of B2_Mm2 in innate immunity
ChIP-seq and RNA-seq data in murine primary bone marrow derived macrophages (BMDMs) were downloaded from publicly available datasets and processed as described below. All data were aligned to mm10. 

#### 1. Identify interferon-inducible genes and transposon families

RNA-seq reads were assigned to gene annotation using Gencode vM19, and interferon stimulated genes (ISGs) were identified using DESeq2 comparing BMDMs stimulated with interferon gamma (IFNG) relative to untreated. Family-level transposable element (TE) expression was determined by realigning RNA-seq reads using hisat2, allowing multimappers (see [hisat2_k100.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/hisat2_k100.sbatch)). Reads were assigned to TE families using TEtranscripts with a custom GTF annotation file derived from Dfam annotation (see [generate_TEtranscripts_gtf.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/generate_TEtranscripts_gtf.sbatch)). IFNG-inducible TE families were identified using DESeq2.

**Full BMDM RNA-seq Workflow:**
1. [bbduk.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/bbduk.sbatch)
2. [fastqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/fastqc.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/multiqc.sbatch)
4. [hisat2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/hisat2.sbatch)
5. [featureCounts.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/featureCounts.sbatch)
6. [DESeq2_genes.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/DESeq2_genes.R)
7. [extract_top_750_ISGs.sh](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/extract_top_750_ISGs.sh), [extract_top_750_IRGs.sh](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/extract_top_750_IRGs.sh), [extract_random_750_nonresponsive_genes.sh](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/extract_random_750_nonresponsive_genes.sh)
8. [Dicer1_expression_bar.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/Dicer1_expression_bar.R)

**For TEtranscripts, realign bams to allow multiple alignments per read:**
1. [hisat2_k100.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/hisat2_k100.sbatch)
2. [generate_TEtranscripts_gtf.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/generate_TEtranscripts_gtf.sbatch)
3. [TEtranscripts.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/TEtranscripts.sbatch)
4. [DESeq2_TEtranscripts.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/DESeq2_TEtranscripts.R)
5. [TEtranscripts_B2_bar_expression.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_BMDM/TEtranscripts_B2_bar_expression.R)

#### 2. Identify STAT1-bound regions and test for family-level TE enrichment

GIGGLE was used to create a database of all TE families in the mm10 mouse genome using Dfam v2.0 annotation. Results were filtered according to the reported odds ratio across H3K27ac and STAT1 peak regions (see [filter_giggle_results.sh](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/filter_giggle_results.sh)). Predicted IFNG enhancer-TE associations were plotted as a bubble plot (see [giggle_bubbles.py](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/giggle_bubbles.py)). 

We then identified a subset of B2 SINE elements that are bound by STAT1 in IFNG-stimulated BMDMs. Proximity to the nearest interferon stimulated gene (ISG), interferon repressed gene (IRG), and nonresponsive gene was determined for each STAT1-bound element and plotted as a histogram (see [https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/nearest_neighbor_histograms_piccolo_IFNG_4h_vs_UT.R](nearest_neighbor_histograms_piccolo_IFNG_4h_vs_UT.R)). We additionally plotted H3K27ac, STAT1, CTCF, and RAD21 ChIP-seq signal as well as predicted binding sites over B2_Mm2 elements as a heatmap (see [B2_Mm2_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/B2_Mm2_heatmap.sbatch)).

**A typical ChIP-seq workflow to call peaks looks like this:**
1. [bbduk.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/bbduk.sbatch)
2. [fastqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/fastqc.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/multiqc.sbatch)
4. [bwa.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/bwa.sbatch)
5. [remove_duplicates.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/remove_duplicates.sbatch)
6. [macs2_piccolo.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/macs2_piccolo.sbatch), [macs2_platanitis.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/macs2_platanitis.sbatch), [macs2_cuartero.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/macs2_cuartero.sbatch), [macs2_gualdrini.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/macs2_gualdrini.sbatch)
7. [bdg_to_bigwig.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/bdg_to_bigwig.sbatch)
8. [intersect_peak_replicates.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/intersect_peak_replicates.sbatch)
9. [xstreme.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/xstreme.sbatch)

**Repeat enrichment analysis:**
1. [giggle_index.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/giggle_index.sbatch)
2. [giggle_search](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/giggle_search.sbatch)
3. [filter_giggle_results.sh](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/filter_giggle_results.sh)
4. [giggle_bubbles.py](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/giggle_bubbles.py)
5. [overlap_TEs_STAT1_summits.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/overlap_TEs_STAT1_summits.sbatch)

**Nearest neighbor analysis:**
1. [get_overlapping_B2_nearest_neighbor.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/get_overlapping_B2_nearest_neighbor.sbatch)
2. [bedtools_closest_nearest_neighbor.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/bedtools_closest_nearest_neighbor.sbatch)
3. [nearest_neighbor_histograms_piccolo_IFNG_4h_vs_UT.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/nearest_neighbor_histograms_piccolo_IFNG_4h_vs_UT.R), [nearest_neighbor_histograms_piccolo_IFNG_2h_vs_UT.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/nearest_neighbor_histograms_piccolo_IFNG_2h_vs_UT.R), [nearest_neighbor_histograms_platanitis_IFNG_2h_vs_UT.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/nearest_neighbor_histograms_platanitis_IFNG_2h_vs_UT.R)

**Visualize ChIP-seq signal over B2_Mm2 as a heatmap:**
1. [get_overlapping_B2_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/get_overlapping_B2_heatmap.sbatch)
2. [B2_Mm2_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/B2_Mm2_heatmap.sbatch)

**Assess distribution of p-values for predicted GAS motifs that overlap B2 SINE elements as a box-and-whisker plot:**
1. [get_overlapping_B2_box_whisker.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/get_overlapping_B2_box_whisker.sbatch)
2. [fimo_pval_1.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/fimo_pval_1.sbatch)
3. [get_fimo_pval_box_whisker.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/get_fimo_pval_box_whisker.sbatch)
4. [B2_GAS_whisker.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ChIPseq_BMDM/B2_GAS_whisker.R)

#### 3. Assess STAT1 and CTCF binding over B2 SINE subfamilies

We identified putative STAT1 and CTCF binding sites for the mm10 mouse genome assembly genome-wide using FIMO. B2 elements were "expanded" such that the coordinates are based on "full-length" boundaries relative to the consensus. Predicted motifs over all annotated B2 SINE elements were plotted as a heatmap (see [B2_Mm2_motif_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/B2_Mm2_motif_heatmap.sbatch)). 

**Workflow:**
1. [fimo.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/fimo.sbatch)
2. [convert_fimo_txt_to_bw.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/convert_fimo_txt_to_bw.sbatch)
3. [run_createExpandedRepeatFile.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/run_createExpandedRepeatFile.sbatch)
4. [B2_Mm2_motif_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/B2_Mm2_motif_heatmap.sbatch), [B2_Mm1a_motif_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/B2_Mm1a_motif_heatmap.sbatch), [B2_Mm1t_motif_heatmap.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/motif_analysis/B2_Mm1t_motif_heatmap.sbatch)

#### 4. Predict enhancer-gene contacts using the Activity-by-Contact Model

We reanalyzed publicly available ATAC-seq and Hi-C data from IFNG-stimulated murine BMDMs and subsequently ran the Activity-by-Contact Model with H3K27ac ChIP-seq and RNA-seq generated from previous analyses to predict enhancer-gene contacts.

**ATAC-seq Workflow:**
1. [bbduk.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/bbduk.sbatch)
2. [fastqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/fastqc.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/multiqc.sbatch)
4. [bowtie2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/bowtie2.sbatch)
5. [remove_duplicates.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/remove_duplicates.sbatch)
6. [shift_fragments.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/shift_fragments.sbatch)
7. [macs2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ATACseq_BMDM/macs2.sbatch)

**Hi-C Workflow:**
1. [bwa.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/bwa.sbatch)
2. [pairtools_parse.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/pairtools_parse.sbatch)
3. [pairtools_sort.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/pairtools_sort.sbatch)
4. [pairtools_merge.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/pairtools_merge.sbatch)
5. [pairtools_dedup.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/pairtools_dedup.sbatch)
6. [pairtools_filter.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/pairtools_filter.sbatch)
7. [run_generate_site_positions.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/run_generate_site_positions.sbatch)
8. [run_addfrag2pairs.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/run_addfrag2pairs.sbatch)
9. [juicer_pre.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/juicer_pre.sbatch)
10. [juicebox_dump.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/HiC_BMDM/juicebox_dump.sbatch)

**ABC Workflow:**
1. [call_candidate_regions.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ABC_BMDM/call_candidate_regions.sbatch)
2. [collapse_gene_boundaries.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ABC_BMDM/collapse_gene_boundaries.sbatch)
3. [find_neighborhoods.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ABC_BMDM/find_neighborhoods.sbatch)
4. [predict_enhancers.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ABC_BMDM/predict_enhancers.sbatch)
5. [subset_and_intersect_enhancers.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/ABC_BMDM/subset_and_intersect_enhancers.sbatch)

#### 5. Comparative analysis assessing regulatory contibutions of B2_Mm2 on innate immunity in mouse

We reanalyzed publicly available RNA-seq data from human CD14+ monocytes stimulated with IFNG for 24 hours to define a set of human ISGs, from which human-to-mouse one-to-one orthologs were identified. Mouse and human-to-mouse ISGs were binned according to species specificity, and the nearest STAT1-bound B2_Mm2 elements relative to each ISG or top putative B2_Mm2 enhancer predicted to interact with an ISG were identified.

**Human RNA-seq Analysis Workflow:**
1. [bbduk.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/bbduk.sbatch)
2. [fastqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/fastqc.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/multiqc.sbatch)
4. [hisat2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/hisat2.sbatch)
5. [featureCounts.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/featureCounts.sbatch)
6. [DESeq2.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/DESeq2.R)

**Orthology Analysis Workflow:**
1. [generate_binary_matrix.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/generate_binary_matrix.sbatch)
2. [identify_nearest_STAT1_B2_Mm2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/identify_nearest_STAT1_B2_Mm2.sbatch)
3. [identify_interacting_ABC_B2_Mm2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/orthology_analysis/identify_interacting_ABC_B2_Mm2.sbatch)

#### 6. CRISPR-mediated deletion of B2_Mm2.Dicer1

We generated J774A.1 clones harboring a deletion for a B2_Mm2 element intronic to the *Dicer1* gene. Changes in gene expression were quantified using qPCR (see [qPCR_bargraph.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/qPCR_bargraph.R)) and RNA-seq. 

**Mutant J774A.1 RNA-seq Workflow:**
1. [bbduk_PE.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/bbduk_PE.sbatch)
2. [fastqcreport.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/fastqcreport.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/multiqc.sbatch)
4. [hisat2_PE.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/hisat2_PE.sbatch)
5. [merge_bams.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/merge_bams.sbatch)
6. [bamTobw.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/bamTobw.sbatch)
7. [featureCounts.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/fastqcreport.sbatch)
8. [deseq2.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/deseq2.R)
9. [distance_plots.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/distance_plots.R)
10. [normalized_CPM_plots.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/RNAseq_J774/normalized_CPM_plots.R)

To assess whether deletion of the B2_Mm2 element changes relative isoform abundances, we ran Stringtie to assemble novel transcripts and subsequently performed differential expression analysis at the transcript level.

**Isoform Expression Workflow:**
1. [stringtie_assemble.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/stringtie_assemble.sbatch)
2. [stringtie_merge.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/stringtie_merge.sbatch), [gtf_list.txt](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/gtf_list.txt)
3. [salmon_index_decoy.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/salmon_index_decoy.sbatch), [decoys.txt](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/decoys.txt)
4. [salmon_quant.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/salmon_quant.sbatch)
5. [DESeq2.R](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/DESeq2.R), [sample_names.txt](https://github.com/coke6162/B2_SINE_enhancers/blob/main/isoform_expression_J774/sample_names.txt)

We additionally performed CUT&TAG (H3K27ac, STAT1, POLR2A) on wild-type J774A.1 cells and J774A.1 cells harboring a deletion for B2_Mm2.Dicer1. 

**CUT&TAG Workflow:**
1. [bbduk_PE.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/bbduk_PE.sbatch)
2. [fastqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/fastqc.sbatch)
3. [multiqc.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/multiqc.sbatch)
4. [bwa_batch.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/bwa_batch.sbatch)
5. [MACS2.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/MACS2.sbatch)
6. [bdg_bw.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/bdg_bw.sbatch)
7. [calculate_FRIP_score.sbatch](https://github.com/coke6162/B2_SINE_enhancers/blob/main/CUTnTAG_J774/calculate_FRIP_score.sbatch)

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top