Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 3fad74c
  • /
  • automl_train_manual.Rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:3fbb26a22483e1691425bdfe42a74311706db828
directory badge Iframe embedding
swh:1:dir:3fad74cf4e14c704f417db3a9b6d531c086afa22
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
automl_train_manual.Rd
\name{automl_train_manual}
\alias{automl_train_manual}
\title{automl_train_manual}
\description{
The base deep neural network train function (one deep neural network trained without automatic hyperparameters tuning)
}
\usage{
automl_train_manual(Xref, Yref, hpar = list(), mdlref = NULL)
}
\arguments{
\item{Xref}{ inputs matrix or data.frame (containing numerical values only)}

\item{Yref}{ target matrix or data.frame (containing numerical values only)}

\item{hpar}{ list of parameters and hyperparameters for Deep Neural Network, see \link{hpar} section\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)}

\item{mdlref}{ model trained with \link{automl_train} or \link{automl_train_manual} to start training from a saved model (shape,
weights...) for fine tuning\cr
nb: manually entered parameters above override loaded ones}
}

\examples{
##REGRESSION (predict Sepal.Length given other Iris parameters)
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
#with gradient descent
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(learningrate = 0.01,
                                            numiterations = 30,
                                            minibatchsize = 2^2))
\dontrun{
#with PSO
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(modexec = 'trainwpso',
                                            numiterations = 30,
                                            psopartpopsize = 50))
#with PSO and custom cost function
f <- 'J=abs((y-yhat)/y)'
f <- c(f, 'J=sum(J[!is.infinite(J)],na.rm=TRUE)')
f <- c(f, 'J=(J/length(y))')
f <- paste(f, collapse = ';')
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(modexec = 'trainwpso',
                                            numiterations = 30,
                                            psopartpopsize = 50,
                                            costcustformul = f))

##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
#with gradient descent and 2 hidden layers
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(layersshape = c(10, 10, 0),
                                            layersacttype = c('tanh', 'relu', 'sigmoid'),
                                            layersdropoprob = c(0, 0, 0)))
#with gradient descent and no hidden layer (logistic regression)
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(layersshape = c(0),
                                            layersacttype = c('sigmoid'),
                                            layersdropoprob = c(0)))
#with PSO and softmax
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,
                                hpar = list(modexec = 'trainwpso',
                                            layersshape = c(10, 0),
                                            layersacttype = c('relu', 'softmax'),
                                            layersdropoprob = c(0, 0),
                                            numiterations = 50,
                                            psopartpopsize = 50))
}
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top