Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/koffie/mdmagma
22 August 2025, 12:46:07 UTC
  • Code
  • Branches (5)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/heads/patch-1
    • refs/tags/v0.1.0
    • refs/tags/v0.2.0
    • refs/tags/v0.2.1
    • f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352
    No releases to show
  • 6cabcdb
  • /
  • rank_zero_of_X1mn.m
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:40a2f70a5f09a1b8d20c94c6967ccadb13f4a8f7
origin badgedirectory badge Iframe embedding
swh:1:dir:6cabcdbbecaf6447c0138c3e9b1dfeac3ce95f9f
origin badgerevision badge
swh:1:rev:f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352
origin badgesnapshot badge
swh:1:snp:69a0fcb477f0fe8dbd9256da2f6292c8d8cf7556

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352 authored by Maarten Derickx on 02 November 2020, 22:43:35 UTC
Quickly lists all non cuspidal places up to diamond operators on X_1(N)
Tip revision: f69d0e0
rank_zero_of_X1mn.m
function TwistOfSimpleModularSymbolsSpace(S,chi);
//On input of a irreducible new modular symbols space S and a character chi of prime power 
//modulus output the modular symbols space corresponding to the twist of M by the primitive character associated to chi
//i.e. if f is the modular form associated to S then outputs the modular symbols space
//corresponding to the modular form f_chi
//the sign of M should be 1 or -1, and the sign of the output will be the same
  if Conductor(chi) eq 1 then;
    return S;
  end if;
  chi := AssociatedPrimitiveCharacter(chi);
  chi_S := DirichletCharacter(S);
  m := Modulus(chi_S);
  n := Modulus(chi);
  assert IsPrimePower(n);
  p := PrimeDivisors(n)[1];
  sign := Sign(S);
  k := Weight(S);
  chi_t := Extend(chi_S*chi^2,m*n^2);
  Mt := ModularSymbols(chi_t,k,sign);
  St := CuspidalSubspace(Mt);
  for Si in NewformDecomposition(St) do;
    Snew := AssociatedNewSpace(Si);
    tf,chi_i := IsTwist(S,Snew,p);
    if tf and AssociatedPrimitiveCharacter(chi_i) eq chi then;
      return Snew;
    end if;
  end for;
  print "Did not find a twist while we should have!!!!";
  assert false;
end function;




function PostiveRankNewFactors(m,n);
  //Let m,n be two integer and let 
  //G be the congruence subgroup given by the matrices of the form
  //
  //   [a b]
  //   [c d]
  //
  //with a,d congruent to 1 modulo mn
  //and c congruent to 0 modulo m^2n
  //Then this function returns one modular symbols space
  //for every isogeny class of simple abelian varieties that occurs as an isogeny factor
  //of J(G) and obtains positive rank over Q(zeta_m)
  pr_new_factors := [];
  D := FullDirichletGroup(m*n);
  Chi := FullDirichletGroup(m);
  for chi in Elements(Chi) do;
    for d in GaloisConjugacyRepresentatives(D) do;
      d1 := Extend(d,m^2*n);
      //if IsOdd(d) then;
      //  continue;
      //end if;

      M := ModularSymbols(d1,2,1);
      S := CuspidalSubspace(M);
      for Si in NewformDecomposition(S) do;
        Snew := AssociatedNewSpace(Si);
        St := TwistOfSimpleModularSymbolsSpace(Snew,chi);
        if Dimension(St) ne Dimension(WindingSubmodule(St)) then;
          Append(~pr_new_factors,Snew);
        end if;
      end for;
    end for;
  end for;
  return pr_new_factors;
end function;

function IsX1mnRankZero(m,n);
  return #PostiveRankNewFactors(m,n) eq 0;
end function;



back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API