\name{SimulateRF} \alias{SimulateRF} \alias{InitSimulateRF} \alias{DoSimulateRF} \title{Simulation of Random Fields} \description{ \code{DoSimulateRF} performs an already initialised simulation. \code{InitSimulateRF} internal function; use \code{\link{InitGaussRF}} and \code{\link{InitMaxStableRF}}, instead. % and some exotic methods, like hyperplane tessellations. } \usage{ DoSimulateRF(n=1, register=0, paired=FALSE) InitSimulateRF(x, y=NULL, z=NULL, T=NULL, grid, model, param, trend, method=NULL, register=0, gridtriple=FALSE, distribution=NA) } \arguments{ \item{x}{matrix of coordinates, or vector of x coordinates} \item{y}{vector of y coordinates} \item{z}{vector of z coordinates} \item{T}{time instances} \item{grid}{logical; determines whether the vectors \code{x}, \code{y}, and \code{z} should be interpreted as a grid definition, see Details.} \item{model}{string; covariance or variogram model, see \code{\link{CovarianceFct}}, or type \code{\link{PrintModelList}()} to get all options} \item{param}{vector or list. \code{param=c(mean, variance, nugget, scale, ...)}, \code{param=list(c(variance, scale, ...), ..., c(variance,scale,...))}, \code{param=matrix(...)}, or \code{param=list(list(variance, anisotropy, kappa),..., list(variance, anisotropy, kappa))}; the parameters must be given in this order; further parameters are to be added in case of a parametrised class of models, see \code{\link{CovarianceFct}}} \item{trend}{Not programmed yet. trend surface: number (mean), vector of length \eqn{d+1} (linear trend \eqn{a_0+a_1 x_1 + \ldots + a_d x_d}{ a_0 +a_1 x_1 + ... + a_d x_d}), or function} \item{method}{\code{NULL} or string; Method used for simulating, see \code{\link{RFMethods}}, or type \code{\link{PrintMethodList}()} to get all options} \item{register}{0:9; place where intermediate calculations are stored; the numbers are aliases for 10 internal registers} \item{gridtriple}{logical; if \code{gridtriple==FALSE} ascending sequences for the parameters \code{x}, \code{y}, and \code{z} are expected; if \code{gridtriple==TRUE} triples of form \code{c(start,end,step)} expected; this parameter is used only if \code{grid==TRUE}} \item{distribution}{marginal distribution:\cr 'Gauss', 'Poisson', or 'MaxStable'} \item{n}{number of realisations to generate; if \code{paired=TRUE} then \code{n} must be even.} \item{paired}{ logical. If \code{TRUE} then every second simulation is obtained by only changing the signs of the standard Gaussian random variables, the simulation is based on (\dQuote{antithetic pairs}). } } \value{ \code{InitSimulateRF} returns 0 if no error has occurred during the initialisation process, and a positive value if failed.\cr \code{DoSimulateRF} returns \code{NULL} if an error has occurred; otherwise the returned object depends on the parameters \code{n} and \code{grid}:\cr \code{n==1}:\cr * \code{grid==FALSE}. A vector of simulated values is returned (independent of the dimension of the random field)\cr * \code{grid==TRUE}. An array of the dimension of the random field is returned.\cr \code{n>1}:\cr * \code{grid==FALSE}. A matrix is returned. The columns contain the repetitions.\cr * \code{grid==TRUE}. An array of dimension \eqn{d+1}{d+1}, where \eqn{d}{d} is the dimension of the random field, is returned. The last dimension contains the repetitions. } \author{Martin Schlather, \email{schlath@hsu-hh.de} \url{http://www.unibw-hamburg.de/WWEB/math/schlath/schlather.html}} \seealso{ \code{\link{GaussRF}}, \code{\link{MaxStableRF}}, \code{\link{RandomFields}} } \keyword{spatial}