Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:41b326b7d6bbc156940fd9adbc4fe1d531406e31
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
import time
from options.train_options import TrainOptions
from data import DataLoader
from models import create_model
from util.writer import Writer
from test import run_test

if __name__ == '__main__':
    opt = TrainOptions().parse()
    dataset = DataLoader(opt)
    dataset_size = len(dataset)
    print('#training meshes = %d' % dataset_size)

    model = create_model(opt)
    writer = Writer(opt)
    total_steps = 0

    for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
        epoch_start_time = time.time()
        iter_data_time = time.time()
        epoch_iter = 0

        for i, data in enumerate(dataset):
            iter_start_time = time.time()
            if total_steps % opt.print_freq == 0:
                t_data = iter_start_time - iter_data_time
            total_steps += opt.batch_size
            epoch_iter += opt.batch_size
            model.set_input(data)
            model.optimize_parameters()

            if total_steps % opt.print_freq == 0:
                loss = model.loss
                t = (time.time() - iter_start_time) / opt.batch_size
                writer.print_current_losses(epoch, epoch_iter, loss, t, t_data)
                writer.plot_loss(loss, epoch, epoch_iter, dataset_size)

            if i % opt.save_latest_freq == 0:
                print('saving the latest model (epoch %d, total_steps %d)' %
                      (epoch, total_steps))
                model.save_network('latest')

            iter_data_time = time.time()
        if epoch % opt.save_epoch_freq == 0:
            print('saving the model at the end of epoch %d, iters %d' %
                  (epoch, total_steps))
            model.save_network('latest')
            model.save_network(epoch)

        print('End of epoch %d / %d \t Time Taken: %d sec' %
              (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
        model.update_learning_rate()
        if opt.verbose_plot:
            writer.plot_model_wts(model, epoch)

        if epoch % opt.run_test_freq == 0:
            acc = run_test(epoch)
            writer.plot_acc(acc, epoch)

    writer.close()

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top