import time from options.train_options import TrainOptions from data import DataLoader from models import create_model from util.writer import Writer from test import run_test if __name__ == '__main__': opt = TrainOptions().parse() dataset = DataLoader(opt) dataset_size = len(dataset) print('#training meshes = %d' % dataset_size) model = create_model(opt) writer = Writer(opt) total_steps = 0 for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset): iter_start_time = time.time() if total_steps % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) model.optimize_parameters() if total_steps % opt.print_freq == 0: loss = model.loss t = (time.time() - iter_start_time) / opt.batch_size writer.print_current_losses(epoch, epoch_iter, loss, t, t_data) writer.plot_loss(loss, epoch, epoch_iter, dataset_size) if i % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_network('latest') iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save_network('latest') model.save_network(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate() if opt.verbose_plot: writer.plot_model_wts(model, epoch) if epoch % opt.run_test_freq == 0: acc = run_test(epoch) writer.plot_acc(acc, epoch) writer.close()