Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/maartenpaul/DBD_tracking
24 October 2025, 04:06:15 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/development
    • refs/heads/master
    • 36f032f51402940b51db3b5835153ca6552ce15b
    No releases to show
  • 0f93134
  • /
  • python
  • /
  • MLE_functions.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:42a26184e06e3dcd3f383afb2a1136242795a15c
origin badgedirectory badge Iframe embedding
swh:1:dir:21bf6ea851a95db58d963db08b6b615cd1c5d540
origin badgerevision badge
swh:1:rev:36f032f51402940b51db3b5835153ca6552ce15b
origin badgesnapshot badge
swh:1:snp:f14cfe52ad9e74434b7288f4e59ba10f11fe3d0f

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 36f032f51402940b51db3b5835153ca6552ce15b authored by Maarten Paul on 07 March 2022, 11:26:44 UTC
Update README.md
Tip revision: 36f032f
MLE_functions.py
font = {'family' : 'sans-serif',
        'color' : 'k',
        'style' : 'normal', 
        'variant' : 'normal',
        'weight' : 'normal',
        'size' : 'medium'}


import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    except RuntimeError as e:
        print(e)

import keras
import os
import pickle
import numpy as np
import statsmodels

# import matplotlib
# import matplotlib.pyplot as plt
# from matplotlib import cm

import seaborn as sns
import math

import pandas as pd

import scipy

from matplotlib.colors import LogNorm, LinearSegmentedColormap

import matplotlib.patches as mpatches
import matplotlib.lines as mlines

from sklearn.cluster import KMeans, MeanShift
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import KernelDensity



def getCoord(x, y):

    coordXY = []

    for trackX, trackY in zip(x, y):
        coxy = []

        for j in range(len(trackX) - 1):
            coxy.append([trackX[j], trackY[j], trackX[j + 1], trackY[j + 1]])
        coordXY.append(coxy)

    return coordXY

def getMeanMSDs(x, y, maxOrder, shift):

    D= []
    for trackX, trackY in zip(x, y):
        dTrack = []
        for order in range(1, maxOrder + 1):
            dOrder = []
            for j in range(len(trackX) - order):
                dOrder.append(np.sqrt((trackX[j + order] - trackX[j]) ** 2 + (trackY[j + order] - trackY[j]) ** 2))
            dTrack.append(dOrder)
        D.append(dTrack)

    dVec = []
    for track in D:
        vector = []
        for order in range(1, maxOrder + 1):
            v = []
            dO = track[order - 1]

            for i in range(len(track[0])):
                if order % 2 == 0:
                    iStart = (i - shift - ((order - 1) // 2))
                    iEnd = iStart + (2 * shift) - 1
                else:
                    iStart = (i - shift - (order // 2))
                    iEnd = iStart + (2 * shift)

                if iStart < 0:
                    iStart = 0

                if iEnd > (len(track[0]) - 1):
                    iEnd = len(track[0]) - 1

                meanPoint = np.mean(dO[iStart:(iEnd + 1)])
                v.append(meanPoint)
            vector.append(v)
        dVec.append(vector)

    return dVec


def getFeatVec(d, x, y, addFeat, maxOrder, shift):

    if 'meanMSD' in addFeat:
        dMeanVec = getMeanMSDs(x, y, maxOrder, shift)

    if 'xy' in addFeat:
        xy = getCoord(x, y)

    featVec = []
    for i in range(len(d)):
        featTrack = []
        for j in range(len(d[i])):
            featPoint = []
            featPoint.append(d[i][j])

            if 'meanMSD' in addFeat:
                for order in range(maxOrder):
                    featPoint.append(dMeanVec[i][order][j])

            if 'xy' in addFeat:
                featPoint.append(xy[i][j][0])
                featPoint.append(xy[i][j][1])
                featPoint.append(xy[i][j][2])
                featPoint.append(xy[i][j][3])

            featTrack.append(featPoint)
        featVec.append(featTrack)

    return featVec

def getDist(x, y, deltaT = 1):

    distances = []

    for trackX, trackY in zip(x, y):
        distances.append(np.sqrt((np.array(trackX)[deltaT:] - np.array(trackX)[:-deltaT]) ** 2 + \
                                 (np.array(trackY)[deltaT:] - np.array(trackY)[:-deltaT]) ** 2))

    return distances


def loadRealData(filename):
    xCoord = []
    yCoord = []
    trInd = 0
    pos = 0

    while trInd <= filename[-1, 3]:
        if trInd == filename[-1, 3]:
            nextt = len(filename)
        else:
            nextt = list(filename[:,3]).index(trInd + 1)

        if nextt - pos > 3:
            frames = filename[pos:nextt, 0]
            xx = filename[pos:nextt, 1]
            yy = filename[pos:nextt, 2]

            missing = list(set(np.arange(frames[0], frames[-1] + 1)) - set(frames))
            if len(missing) != 0:
                missing = sorted(missing)
                xxnew = xx
                yynew = yy
                for i in missing:
                    xxnew = np.insert(xxnew, int(i - frames[0]), np.interp(i, frames, xx))
                    yynew = np.insert(yynew, int(i - frames[0]), np.interp(i, frames, yy))
                xCoord.append(xxnew)
                yCoord.append(yynew)
            else:
                xCoord.append(xx)
                yCoord.append(yy)

        pos = nextt
        trInd += 1

    return xCoord, yCoord

def getMSDandMSS(x, y, numPmsd, numPmss, p, b = 'unknown'):

    # Compute MSD
    dts = np.arange(1, numPmsd + 1)
    timemean = dts - dts.mean()
    sumtsq = sum(timemean ** 2)

    MSD = []
    for dt in dts:
        ddt = getDist(x, y, deltaT = dt)
        flatD = np.asarray([di ** 2 for Ds in ddt for di in Ds])
        MSD.append(flatD.mean())

    if b == 'zero':
        diff = np.array(MSD).mean() / dts.mean() * pixSize ** 2 / t / 4
    else:
        diff = sum(timemean * (MSD - np.array(MSD).mean())) / sumtsq * pixSize ** 2 / t / 4

    # Compute MSS
    dts = np.arange(1, numPmss + 1)
    MSS = []

    for pi in p:
        logM = []
        logT = []
        for dt in dts:
            ddt = getDist(x, y, deltaT = dt)
            flatD = np.asarray([di for Ds in ddt for di in Ds])
            logM.append(np.log10((flatD ** pi).mean()))
            logT.append(np.log10(dt))
        logTmean = np.array(logT) - np.array(logT).mean()
        sumLogTsq = sum(logTmean ** 2)
        logMmean = np.array(logM) - np.array(logM).mean()
        MSS.append(sum(logTmean * logMmean) / sumLogTsq)

    # Compute Smss and intercept
    pmean = p - p.mean()
    sumpsq = sum(pmean ** 2)
    MSSmean = np.array(MSS) - np.array(MSS).mean()
    Smss = sum(pmean * MSSmean) / sumpsq
    intercept = np.array(MSS).mean() - Smss * p.mean()

    return diff, MSS, Smss, intercept

def getMSDandMSSandC(x, y, numPmsd, numPmss, p, b = 'unknown'):

    # Compute MSD
    dts = np.arange(1, numPmsd + 1)
    timemean = dts - dts.mean()
    sumtsq = sum(timemean ** 2)

    MSD = []
    for dt in dts:
        ddt = getDist(x, y, deltaT = dt)
        flatD = np.asarray([di ** 2 for Ds in ddt for di in Ds])
        MSD.append(flatD.mean())

    if b == 'zero':
        diff = np.array(MSD).mean() / dts.mean() * pixSize ** 2 / t / 4
    else:
        diff = sum(timemean * (MSD - np.array(MSD).mean())) / sumtsq * pixSize ** 2 / t / 4

    # Compute MSS
    dts = np.arange(1, numPmss + 1)
    MSS = []
    C = []
    cD = []

    for pi in p:
        logM = []
        logT = []
        for dt in dts:
            ddt = getDist(x, y, deltaT = dt)
            flatD = np.asarray([di for Ds in ddt for di in Ds])
            logM.append(np.log((flatD ** pi).mean()))
            logT.append(np.log(dt))
        logTmean = np.array(logT) - np.array(logT).mean()
        sumLogTsq = sum(logTmean ** 2)
        logMmean = np.array(logM) - np.array(logM).mean()
        gamma =  sum(logTmean * logMmean) / sumLogTsq
        MSS.append(gamma)
        C.append(np.array(logM).mean() - gamma * np.array(logT).mean())
        cD.append((np.exp(np.array(logM).mean()) / 2 ** (pi / 2) / scipy.special.gamma(1 + pi / 2)) ** (2 / pi) \
                  / 2 / np.exp(np.array(logT).mean()))

    # Compute Smss and intercept
    pmean = p - p.mean()
    sumpsq = sum(pmean ** 2)
    MSSmean = np.array(MSS) - np.array(MSS).mean()
    Smss = sum(pmean * MSSmean) / sumpsq
    intercept = np.array(MSS).mean() - Smss * p.mean()

    return diff, MSS, C, cD, Smss, intercept

def getTrackPieces(x, y, allStates):

    piecesX0 = []
    piecesY0 = []
    piecesX1 = []
    piecesY1 = []
    piecesX2 = []
    piecesY2 = []

    for trX, trY, trS in zip(x, y, allStates):
        sw = 0
        pos = 0
        swList = []
        while list(trS)[sw:].count(trS[sw]) != len(trS[sw:]):
            sw = next(ind for ind in range(sw + 1, len(trS)) if trS[ind] != trS[sw])
            if trS[sw - 1] == 0:
                piecesX0.append(trX[pos:sw])
                piecesY0.append(trY[pos:sw])
            elif trS[sw - 1] == 1:
                piecesX1.append(trX[pos:sw])
                piecesY1.append(trY[pos:sw])
            else:
                piecesX2.append(trX[pos:sw])
                piecesY2.append(trY[pos:sw])
            pos = sw
        else:
            if trS[pos] == 0:
                piecesX0.append(trX[pos:])
                piecesY0.append(trY[pos:])
            elif trS[pos] == 1:
                piecesX1.append(trX[pos:])
                piecesY1.append(trY[pos:])
            else:
                piecesX2.append(trX[pos:])
                piecesY2.append(trY[pos:])

    return piecesX0, piecesY0, piecesX1, piecesY1, piecesX2, piecesY2

def getTrackPiecesForInfo(x, y, allStates):

    piecesX0 = []
    piecesY0 = []
    piecesX1 = []
    piecesY1 = []
    piecesX2 = []
    piecesY2 = []
    trnum = 0
    trnums0 = []
    trnums1 = []
    trnums2 = []

    for trX, trY, trS in zip(x, y, allStates):
        sw = 0
        pos = 0
        swList = []
        n = 1
        while list(trS)[sw:].count(trS[sw]) != len(trS[sw:]):
            sw = next(ind for ind in range(sw + 1, len(trS)) if trS[ind] != trS[sw])
            if trS[sw - 1] == 0:
                piecesX0.append(trX[pos:sw])
                piecesY0.append(trY[pos:sw])
                trnums0.append(trnum + n/10)
            elif trS[sw - 1] == 1:
                piecesX1.append(trX[pos:sw])
                piecesY1.append(trY[pos:sw])
                trnums1.append(trnum + n/10)
            else:
                piecesX2.append(trX[pos:sw])
                piecesY2.append(trY[pos:sw])
                trnums2.append(trnum + n/10)
            pos = sw
            n += 1
        else:
            if trS[pos] == 0:
                piecesX0.append(trX[pos:])
                piecesY0.append(trY[pos:])
                trnums0.append(trnum + n/10)
            elif trS[pos] == 1:
                piecesX1.append(trX[pos:])
                piecesY1.append(trY[pos:])
                trnums1.append(trnum + n/10)
            else:
                piecesX2.append(trX[pos:])
                piecesY2.append(trY[pos:])
                trnums2.append(trnum + n/10)
        trnum += 1

    return piecesX0, piecesY0, piecesX1, piecesY1, piecesX2, piecesY2, trnums0, trnums1, trnums2

def patchmatch(match, pattern):
    indices = []
    for pat in pattern:
        found = False
        patlen = len(pat)
        for i in range(len(match)):
            rollAr = np.roll(match, -i)
            if rollAr[:patlen].tolist() == pat:
                ind = np.arange(i, i + patlen)
                found = True
                break
        if found == False:
            print('No match for %s' %(pat))
        else:
            indices.append(ind.tolist())

    return indices
    
def releaseMemory():
    from numba import cuda
    cuda.select_device(0)
    cuda.close()
    

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API