\name{greedy.search} \alias{backward.search} \alias{forward.search} \title{ Greedy search } \description{ The algorithms for searching atrribute subset space. } \usage{ backward.search(attributes, eval.fun) forward.search(attributes, eval.fun) } \arguments{ \item{attributes}{ a character vector of all attributes to search in } \item{eval.fun}{ a function taking as first parameter a character vector of all attributes and returning a numeric indicating how important a given subset is } } \details{ These algorithms implement greedy search. At first, the algorithms expand starting node, evaluate its children and choose the best one which becomes a new starting node. This process goes only in one direction. \code{forward.search} starts from an empty and \code{backward.search} from a full set of attributes. } \value{ A character vector of selected attributes. } \author{ Piotr Romanski } \seealso{ \code{\link{best.first.search}}, \code{\link{hill.climbing.search}}, \code{\link{exhaustive.search}} } \examples{ library(rpart) data(iris) evaluator <- function(subset) { #k-fold cross validation k <- 5 splits <- runif(nrow(iris)) results = sapply(1:k, function(i) { test.idx <- (splits >= (i - 1) / k) & (splits < i / k) train.idx <- !test.idx test <- iris[test.idx, , drop=FALSE] train <- iris[train.idx, , drop=FALSE] tree <- rpart(as.simple.formula(subset, "Species"), train) error.rate = sum(test$Species != predict(tree, test, type="c")) / nrow(test) return(1 - error.rate) }) print(subset) print(mean(results)) return(mean(results)) } subset <- forward.search(names(iris)[-5], evaluator) f <- as.simple.formula(subset, "Species") print(f) }