https://github.com/rdicosmo/parmap
Tip revision: 963608763589e03de38e744d359884d491e65460 authored by Roberto Di Cosmo on 25 November 2022, 20:30:16 UTC
Update biblatex snippet
Update biblatex snippet
Tip revision: 9636087
README.md
# Parmap in a nutshell
Parmap is a minimalistic library allowing to exploit multicore architecture for
OCaml programs with minimal modifications: if you want to use your many cores to
accelerate an operation which happens to be a map, fold or map/fold
(map-reduce), just use Parmap's `parmap`, `parfold` and `parmapfold` primitives in
place of the standard `List.map` and friends, and specify the number of
subprocesses to use by the optional parameter `~ncores`.
See the `example` directory for a couple of running programs.
## DO'S and DONT'S
Parmap is *not* meant to be a replacement for a full fledged implementation of
parallelism skeletons (map, reduce, pipe, and the many others described in the
scientific literature since the end of the 1980's, much earlier than the
specific implementation by Google engineers that popularised them). It is
meant, instead, to allow you to quickly leverage the idle processing power of
your extra cores, when handling some heavy computational load.
The principle of parmap is very simple: when you call one of the three available
primitives, map, fold, and mapfold , your OCaml sequential program forks in n
subprocesses (you choose the n), and each subprocess performs the computation on
the 1/n of the data, in chunks of a size you can choose, returning the results
through a shared memory area to the parent process, that resumes execution once
all the children have terminated, and the data has been recollected.
You *need* to run your program *on a single multicore machine*; repeat after me:
`Parmap` _is not meant_ to run on a cluster, see one of the many available
(re)implementations of the map-reduce schema for that.
By forking the parent process on a single machine, the children get access, for
free, to all the data structures already built, even the imperative ones, and as
far as your computation inside the map/fold does not produce side effects that
need to be preserved, the final result will be the same as performing the
sequential operation, the only difference is that you might get it faster.
The OCaml code is reasonably simple and only marginally relies on external C
libraries: most of the magic is done by your operating system's fork and memory
mapping mechanisms. One could gain some speed by implementing a
marshal/unmarshal operation directly on bigarrays, but we did not do this yet.
Of course, if you happen to have open channels, or files, or other connections
that should only be used by the parent process, your program may behave in a
very wierd way: as an example, *do not* open a graphic window before calling a
Parmap primitive, and *do not* use this library if your program is
multi-threaded!
## Pinning processes to physical CPUs
To obtain maximum speed, Parmap tries to pin the worker processes to a CPU,
using the scheduler affinity interface that is available in recent Linux
kernels. Similar functionality may be obtained on different platforms using
slightly different API. Contributions are welcome to support those other APIs,
just make sure that you use autoconf properly.
## Using Parmap with Ocamlnat
You can use Parmap in a native toplevel (it may be quite useful if you use the
native toplevel to perform fast interactive computations), but remember that you
need to load the `.cmxs` modules in it; an example is given in `example/topnat.ml`
## Preservation of output order in Parmap
If the number of chunks is equal to the number of cores, it is easy to preserve
the order of the elements of the sequence passed to the map/fold operations, so
the result will be a list with the same order as if the sequential function would
be applied to the input. This is what the `parmap`, `parmapfold` and `parfold` functions
do when the chunksize argument is not used.
If the user specifies a chunksize that is different from the number of cores,
the current implementation for `parmap`, `parmapi`, `array_parmap` and
`array_parmapi` by default does not guarantee the preservation of the order
of the results. If the `keeporder` parameter is set to true, an alternative
implementation is used, that tags the chunks and reorders them at the end, so the result of
calling `Parmap.parmap f l` is the same as `List.map f l`. Depending on the
nature of your workload (in particular, number of chunks and size of the results),
this may be way more efficient than implementing a sorting mechanism yourself, but
may also end up using up to twice the space and time of the default implementation:
there is a tradeoff, and it is up to the user to choose the solution that better suits him/her.
No reordering logic is implemented for `parmapfold`, `parfold` and their
variants, as performing these operations in parallel only make sense if the
order is irrelevant.
In general, using little chunksize helps in balancing the load among the
workers, and provides better speed, but incurs a little overhead for tagging and
reordering the chunks: there is a tradeoff, and it is up to the user to choose
the solution that better suits him/her.
## Fast map on arrays and on float arrays
Visiting an array is much faster than visiting a list, and conversion of an array
to and from a list is expensive, on large data structures, so we provide a specialised
version of map on arrays, that beaves exactly like parmap.
We also provide a highly optimised specialised parmap version that is targeted
to float arrays, `array_float_parmap`, that allows you to perform parallel
computation on very large float arrays efficiently, without the boxing/unboxing
overhead introduced by the other primitives, including `array_parmap`.
To understand the efficiency issues involved in the case of large arrays of float,
here is a short summary of the steps that any implementation of a parallel map
function must perform.
1. create a float array to hold the result of the computation.
This operation is expensive: on an Intel i7, creating a 10M float array
takes 50 milliseconds
```ocaml
ocamlnat
Objective Caml version 3.12.0 - native toplevel
# #load "unix.cmxs";;
# let d = Unix.gettimeofday() in ignore(Array.create 10000000 0.); Unix.gettimeofday() -. d;;
- : float = 0.0501301288604736328
```
2. create a shared memory area,
3. possibly copy the result array to the shared memory area,
4. perform the computation in the children writing the result in the shared memory area,
5. possibly copy the result back to the OCaml array.
All implementations need to do 1, 2 and 4; steps 3 and/or 5 may be omitted depending on
what the user wants to do with the result.
The `array_float_parmap` performs steps 1, 2, 4 and 5. It is possible to share steps
1 and 2 among subsequent calls to the parallel function by preallocating the result
array and the shared memory buffer, and passing them as optional parameters to the
`array_float_parmap` function: this may save a significant amount of time if the
array is very large.
## Install
### With opam
```
opam install parmap
```
### From source
```
make
make install
make test
```