https://github.com/galmetzer/dipole-normal-prop
Raw File
Tip revision: 0887b893b153f4ce6b09e4dd485f9b042f15b706 authored by Gal Metzer on 08 September 2021, 21:53 UTC
Update README.md
Tip revision: 0887b89
inits.py
import math

import torch


def uniform(size, tensor):
    if tensor is not None:
        bound = 1.0 / math.sqrt(size)
        tensor.data.uniform_(-bound, bound)


def kaiming_uniform(tensor, fan, a):
    if tensor is not None:
        bound = math.sqrt(6 / ((1 + a**2) * fan))
        tensor.data.uniform_(-bound, bound)


def glorot(tensor):
    if tensor is not None:
        stdv = math.sqrt(6.0 / (tensor.size(-2) + tensor.size(-1)))
        tensor.data.uniform_(-stdv, stdv)


def glorot_orthogonal(tensor, scale):
    if tensor is not None:
        torch.nn.init.orthogonal_(tensor.data)
        scale /= ((tensor.size(-2) + tensor.size(-1)) * tensor.var())
        tensor.data *= scale.sqrt()


def zeros(tensor):
    if tensor is not None:
        tensor.data.fill_(0)


def ones(tensor):
    if tensor is not None:
        tensor.data.fill_(1)


def normal(tensor, mean, std):
    if tensor is not None:
        tensor.data.normal_(mean, std)


def reset(nn):
    def _reset(item):
        if hasattr(item, 'reset_parameters'):
            item.reset_parameters()

    if nn is not None:
        if hasattr(nn, 'children') and len(list(nn.children())) > 0:
            for item in nn.children():
                _reset(item)
        else:
            _reset(nn)
back to top