{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import modules\n",
"import papa_utils as pu\n",
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read configuration file\n",
"config = pu.read_config('settings.toml')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sort PAPA, DR, and other trajectories\n",
"pu.sort_PAPA_DR(config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# do state array analysis on all trajectories\n",
"[SA,posterior_occs,condition_names] = pu.analyze_PAPA_DR_stateArray(config,nworkers=6)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# analyze the same number of subsampled trajectories from each sorted category of each condition\n",
"[SA_sameN,posterior_occs_sameN,condition_names_sameN] = pu.analyze_PAPA_DR_stateArray_sameN(config,nworkers=6,randseed=1234)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot number of localizations over the whole movie\n",
"pu.plot_Nlocs_wholemovie(config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot number of localizations averaged over a violet/green cycle\n",
"pu.plot_Nlocs_bycycle(config)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}