cpglmm.c
/************************************************************/
/* Function for fitting the Compound Poisson Generalized */
/* Linear Mixed models using the Laplace approximation */
/* and the adaptive Gaussian-Hermite quadrature method. */
/* This is based on the code from the lme4 package. */
/* Orignal authors (lme4.0): */
/* Bates D, Maechler M, Bolker B and Walker S */
/* */
/* Author: Wayne Zhang */
/* actuary_zhang@hotmail.com */
/************************************************************/
/**
* @file cpglmm.c
* @brief Functions that provide the Laplacian approximation
* and the adaptive Gaussian-Hermite quadrature methods for the
* Compound Poisson Generalized Linear Mixed Model.
* The program is based on the C code from lme4, where
* I removed the unnecessary pieces for linear mixed
* models and nonlinear models, and changed the code for
* updating the mean and the deviance and optimization.
* The compound Poisson density approximation method is used
* for computing the loglikelihood.
* @author Wayne Zhang
*/
#include "common.h" /* for common include headers */
#include "tweedie.h" /* for evaluating tweedie densities */
#include "utilities.h" /* for utility functions */
#include "cpglmm.h" /* prototypes */
#include <R_ext/stats_package.h> /* for S_nlminb_iterate declarations */
/** cholmod_common struct initialized */
extern cholmod_common c;
/* Constants used in Penalized Least Squares*/
/** Maximum number of iterations in update_u */
#define CM_MAXITER 300
/** Tolerance level for convergence criterion in update_u */
#define CM_TOL 1e-10
/** Minimum step factor in update_u */
#define CM_SMIN 1e-5
/** precision and maximum number of iterations used in GHQ */
#define GHQ_EPS 1e-15
#define GHQ_MAXIT 40
/** positions in the deviance vector */
enum devP {
ML_POS = 0, /**<Maximum likelihood estimation criterion */
REML_POS, /**<REML criterion */
ldL2_POS, /**<2*log-determinant of L */
ldRX2_POS, /**<2*log-determinant of RX */
sigmaML_POS, /**<current ML estimate of sigma */
sigmaREML_POS, /**<current REML estimate of sigma */
pwrss_POS, /**<penalized weighted residual sum of squares */
disc_POS, /**<discrepancy */
usqr_POS, /**<squared length of u */
wrss_POS, /**<weighted residual sum of squares */
dev_POS, /**<deviance - defined for quasi families */
llik_POS, /**<log-likelihood - undefined for quasi families */
NULLdev_POS /**<null deviance */
};
/** positions in the dims vector */
enum dimP {
nt_POS = 0, /**<number of terms in random effects */
n_POS, /**<number of observations */
p_POS, /**<number of fixed-effects parameters */
q_POS, /**<number of random effects */
s_POS, /**<number of variables in h (1 unless nonlinear) */
np_POS, /**<total number of parameters for T and S */
LMM_POS, /**<is the model a linear mixed model? */
isREML_POS, /**<indicator of REML estimation */
fTyp_POS, /**<family type for generalized model */
lTyp_POS, /**<link type for generalized model */
vTyp_POS, /**<variance type for generalized model */
nest_POS, /**<indicator of nested grouping factors */
useSc_POS, /**<does the family use a separate scale parameter */
nAGQ_POS, /**<number of adaptive Gauss-Hermite quadrature pts */
verb_POS, /**<verbose output in mer_optimize? */
mxit_POS, /**<maximum # of iterations in mer_optimize */
mxfn_POS, /**<maximum # of function evaluations in mer_optimize */
cvg_POS /**<convergence indictor from port optimization */
};
/**
* Permute the vector src according to perm into dest
*
* @param dest destination
* @param src source
* @param perm NULL or 0-based permutation of length n
* @param n length of src, dest and perm
*
* @return dest
*
* \note If perm is NULL the first n elements of src are copied to dest.
*/
static R_INLINE double*
apply_perm(double *dest, const double *src, const int *perm, int n)
{
for (int i = 0; i < n; i++) dest[i] = src[perm ? perm[i] : i];
return dest;
}
/**
* Extract the parameters from ST list
*
* @param x a list object
* @param pars vector of the appropriate length
*
* @return pointer to the parameter vector
*/
static double *ST_getPars(SEXP x, double *pars)
{
SEXP ST = GET_SLOT(x, install("ST"));
int nt = LENGTH(ST), pos = 0;
for (int i = 0; i < nt; i++) {
SEXP STi = VECTOR_ELT(ST, i);
double *st = REAL(STi);
int nci = INTEGER(getAttrib(STi, R_DimSymbol))[0];
int ncp1 = nci + 1;
for (int j = 0; j < nci; j++)
pars[pos++] = st[j * ncp1]; /**<get parm along the diagonal (T) */
for (int j = 0; j < (nci - 1); j++) //get S
for (int k = j + 1; k < nci; k++)
pars[pos++] = st[k + j * nci];
}
return pars;
}
/**
* Populate the st, nc and nlev arrays. Return the maximum element of nc.
*
* @param ST pointer to a list (length nt) of matrices
* @param Gp group pointers (length nt + 1)
* @param st length nt array of (double*) pointers to be filled with
* pointers to the contents of the matrices in ST. Not used if NULL.
* @param nc length nt array to be filled with the number of columns
* @param nlev length nt array to be filled with the number of
* levels of the grouping factor for each term
*
* @return maximum element of nc
*/
/* populate the st, nc and nlev arrays */
int ST_nc_nlev(const SEXP ST, const int *Gp, double **st, int *nc, int *nlev)
{
int ans = 0, nt = LENGTH(ST);
for (int i = 0; i < nt; i++) {
SEXP STi = VECTOR_ELT(ST, i);
int nci = *INTEGER(getAttrib(STi, R_DimSymbol));
if (nci > ans) ans = nci;
if (st) st[i] = REAL(STi);
nc[i] = nci;
nlev[i] = (Gp[i + 1] - Gp[i]) / nci;
}
return ans;
}
/**
* Multiply A on the left by T'
*
* @param A sparse model matrix
* @param Gp group pointers
* @param nc number of columns per term
* @param nlev number of levels per term
* @param st ST arrays for each term
* @param nt number of terms
*
*/
static void Tt_Zt(CHM_SP A, int *Gp, int *nc, int *nlev, double **st, int nt)
{
int *ai = (int*)(A->i), *ap = (int *)(A->p);
double *ax = (double*)(A->x), one[] = {1,0};
for (int j = 0; j < A->ncol; j++) /* multiply column j by T' */
for (int p = ap[j]; p < ap[j + 1];) {
int i = Gp_grp(ai[p], nt, Gp);
if (nc[i] <= 1) p++;
else {
int nr = p; /* number of rows in `B' in dtrmm call */
while ((ai[nr] - Gp[i]) < nlev[i]) nr++;
nr -= p; /* nr == 1 except in models with carry-over */
F77_CALL(dtrmm)("R", "L", "N", "U", &nr, nc + i,
one, st[i], nc + i, ax + p, &nr);
p += (nr * nc[i]);
}
}
}
/**
* Evaluate the sparse model matrix A from the Zt and ST slots
* A = S'T'Z', the transpose of the design matrix with unit random effects
*
* @param x a list object
*/
static void update_A(SEXP x)
{
CHM_SP A = A_SLOT(x), Zt = Zt_SLOT(x);
int *Gp = Gp_SLOT(x), *ai = (int*)(A->i), *ap = (int*)(A->p),
*zp = (int*)(Zt->p), ncmax,
nt = DIMS_SLOT(x)[nt_POS];
int annz = ap[A->ncol], znnz = zp[Zt->ncol];
int *nc = Alloca(nt, int), *nlev = Alloca(nt, int);
double **st = Alloca(nt, double*), *ax = (double*)(A->x),
*zx = (double*)(Zt->x);
R_CheckStack();
ncmax = ST_nc_nlev(GET_SLOT(x, install("ST")), Gp, st, nc, nlev);
/* Copy Z' to A unless A has new nonzeros */
Memcpy(ax, zx, znnz);
/* When T != I multiply A on the left by T' */
if (ncmax > 1) Tt_Zt(A, Gp, nc, nlev, st, nt);
/* Multiply A on the left by S */
for (int p = 0; p < annz; p++) {
int i = Gp_grp(ai[p], nt, Gp);
ax[p] *= st[i][((ai[p] - Gp[i]) / nlev[i]) * (nc[i] + 1)];
}
}
/**
* Update the L, sqrtrWt and resid slots. It is assumed that
* update_mu has already been called at the current values of u and
* the model parameters and that A has been updated.
*
* @param x pointer to an mer object
*
* @return penalized weighted residual sum of squares
*
*/
static double cp_update_L(SEXP x)
{
int *dims = DIMS_SLOT(x);
int n = dims[n_POS] ;
double *cx = Cx_SLOT(x), *d = DEV_SLOT(x),
*res = RESID_SLOT(x), *mu = MU_SLOT(x), *muEta = MUETA_SLOT(x),
*pwt = PWT_SLOT(x), *sXwt = SXWT_SLOT(x), *srwt = SRWT_SLOT(x),
*var = VAR_SLOT(x), *y = Y_SLOT(x), one[] = {1, 0};
CHM_SP A = A_SLOT(x);
CHM_FR L = L_SLOT(x);
R_CheckStack();
// Update srwt and res. Reevaluate wrss.
d[wrss_POS] = 0;
for (int j = 0; j < n; j++) {
srwt[j] = sqrt((pwt ? pwt[j] : 1.0) / (var ? var[j] : 1.0)) ;
res[j] = srwt[j] * (y[j] - mu[j]);
d[wrss_POS] += res[j] * res[j];
}
int *ap = (int*)A->p;
double *ax = (double*)(A->x);
// sXwt is the sqrt of the weight in the penalized regression
for (int i = 0; i < n; i++)
sXwt[i] = (srwt ? srwt[i] : 1) * (muEta ? muEta[i] : 1) ;
// a scaled version of A: A * sqrt(W)
for (int j = 0; j < n; j++)
for (int p = ap[j]; p < ap[j + 1]; p++)
cx[p] = ax[p] * sXwt[j] ;
A->x = (void*)cx;
// compute the cholesky factor of AA'+I with permutation
if (!M_cholmod_factorize_p(A, one, (int*)NULL, 0, L, &c))
error(_("cholmod_factorize_p failed: status %d, minor %d from ncol %d"),
c.status, L->minor, L->n);
d[ldL2_POS] = M_chm_factor_ldetL2(L);
d[pwrss_POS] = d[usqr_POS] + d[wrss_POS];
return d[pwrss_POS];
}
/**
* Update the eta, v, mu, resid and var slots according to the current
* values of the parameters and u. Also evaluate d[wrss_POS] using
* the current sqrtrWt slot. The sqrtrWt slot is changed in update_L.
* This function is different from that in lme4, and hence the prefix
* "cp" is added. Specifically, the update of mu, muEta and variance
* is from a Tweedie compound Poisson model.
*
* @param x pointer to a list object
*
* @return penalized, weighted residual sum of squares
*/
static double cp_update_mu(SEXP x)
{
int *dims = DIMS_SLOT(x);
int i1 = 1, n = dims[n_POS], p = dims[p_POS];
double *d = DEV_SLOT(x), *eta = ETA_SLOT(x),
*mu = MU_SLOT(x),
*muEta = MUETA_SLOT(x), *offset = OFFSET_SLOT(x),
*srwt = SRWT_SLOT(x), *res = RESID_SLOT(x),
*lkp = LKP_SLOT(x), *vp = P_SLOT(x),
*var = VAR_SLOT(x),
*y = Y_SLOT(x), one[] = {1, 0};
CHM_FR L = L_SLOT(x);
CHM_SP A = A_SLOT(x);
CHM_DN Ptu, ceta, cu = AS_CHM_DN(GET_SLOT(x, install("u")));
R_CheckStack();
/* eta := offset (offset initialized to zero if NULL) */
Memcpy(eta, offset, n);
/* eta := eta + X \beta */
F77_CALL(dgemv)("N", &n, &p, one, X_SLOT(x), &n,
FIXEF_SLOT(x), &i1, one, eta, &i1);
/* eta := eta + C' P' u */
Ptu = M_cholmod_solve(CHOLMOD_Pt, L, cu, &c);
ceta = N_AS_CHM_DN(eta, n, 1);
R_CheckStack();
if (!M_cholmod_sdmult(A, 1 , one, one, Ptu, ceta, &c))
error(_("cholmod_sdmult error returned"));
M_cholmod_free_dense(&Ptu, &c);
/* update mu, muEta and var */
for (int i = 0; i < n; i++){
mu[i] = link_inv(eta[i], *lkp);
muEta[i] = mu_eta(eta[i], *lkp);
var[i] = pow(mu[i], *vp);
}
/* update resid slot and d[wrss_POS] */
d[wrss_POS] = 0;
for (int i = 0; i < n; i++) {
res[i] = (y[i] - mu[i]) * (srwt ? srwt[i] : 1);
d[wrss_POS] += res[i] * res[i];
}
/* store u'u */
d[usqr_POS] = sqr_length((double*)(cu->x), dims[q_POS]);
d[pwrss_POS] = d[usqr_POS] + d[wrss_POS];
return d[pwrss_POS];
}
/**
* Iterate to determine the conditional modes of the random effects.
* This is the same as that in lme4.
* @param x pointer to a list object
*
* @return number of iterations to convergence (0 for non-convergence)
*/
static int cp_update_u(SEXP x)
{
int *dims = DIMS_SLOT(x);
int i = 0, n = dims[n_POS], q = dims[q_POS], verb = dims[verb_POS];
double *Cx = Cx_SLOT(x),
*res = RESID_SLOT(x), *u = U_SLOT(x),
cfac = ((double)n) / ((double)q),
crit, pwrss, pwrss_old, step;
double *tmp = Calloc(q, double), *tmp1 = Calloc(q, double),
*uold = Calloc(q, double), one[] = {1,0}, zero[] = {0,0};
CHM_FR L = L_SLOT(x);
CHM_DN cres = N_AS_CHM_DN(res, n, 1),
ctmp = N_AS_CHM_DN(tmp, q, 1), sol;
R_CheckStack();
if (!(L->is_ll)) error(_("L must be LL', not LDL'"));
CHM_SP C = A_SLOT(x);
R_CheckStack();
C->x = (void*)Cx;
// update mu related parms
AZERO(u, q);
cp_update_mu(x);
for (i = 0; ; i++) {
Memcpy(uold, u, q);
pwrss_old = cp_update_L(x);
// tmp := PC %*% wtdResid
M_cholmod_sdmult(C, 0 , one, zero, cres, ctmp, &c);
Memcpy(tmp1, tmp, q);
apply_perm(tmp, tmp1, (int*)L->Perm, q);
// tmp := tmp - u
for (int j = 0; j < q; j++) tmp[j] -= u[j];
// solve L %*% sol = tmp
if (!(sol = M_cholmod_solve(CHOLMOD_L, L, ctmp, &c)))
error(_("cholmod_solve (CHOLMOD_L) failed"));
Memcpy(tmp, (double*)(sol->x), q);
M_cholmod_free_dense(&sol, &c);
// evaluate convergence criterion
crit = cfac * sqr_length(tmp, q) / pwrss_old;
if (crit < CM_TOL) break; // don't do needless evaluations
// solve t(L) %*% sol = tmp
if (!(sol = M_cholmod_solve(CHOLMOD_Lt, L, ctmp, &c)))
error(_("cholmod_solve (CHOLMOD_Lt) failed"));
Memcpy(tmp, (double*)(sol->x), q);
M_cholmod_free_dense(&sol, &c);
for (step = 1; step > CM_SMIN; step /= 2) { // step halving
for (int j = 0; j < q; j++) u[j] = uold[j] + step * tmp[j];
pwrss = cp_update_mu(x);
if (verb < 0)
Rprintf("%2d,%8.6f,%12.4g: %15.6g %15.6g %15.6g %15.6g\n",
i, step, crit, pwrss, pwrss_old, u[1], u[2]);
if (pwrss < pwrss_old) {
pwrss_old = pwrss;
break;
}
}
if (step <= CM_SMIN || i > CM_MAXITER) return 0;
}
Free(tmp); Free(tmp1); Free(uold);
return i;
}
/**
* Update the ST and A slots of an mer object.
*
* @param x an mer object
* @param pars double vector of the appropriate length
* @return updated deviance
*
*/
static void
ST_setPars(SEXP x, const double *pars)
{
int *Gp = Gp_SLOT(x), nt = DIMS_SLOT(x)[nt_POS], pos = 0;
int *nc = Alloca(nt, int), *nlev = Alloca(nt, int);
double **st = Alloca(nt, double*);
R_CheckStack();
ST_nc_nlev(GET_SLOT(x, install("ST")), Gp, st, nc, nlev);
/* install the parameters in the ST slot */
for (int i = 0; i < nt; i++) {
int nci = nc[i], ncp1 = nc[i] + 1;
double *sti = st[i];
for (int j = 0; j < nci; j++)
sti[j * ncp1] = pars[pos++];
for (int j = 0; j < (nci - 1); j++)
for (int k = j + 1; k < nci; k++)
sti[k + j * nci] = pars[pos++];
}
update_A(x);
}
/**
* Update the ST, A, fixef, phi and p slots
*
* @param x an cpglmm object
* @param pars double vector of the appropriate length: theta, beta, log(phi) and p in order
* @return updated deviance
*
*/
static void cp_setPars(SEXP x, double *pars){
int *dims = DIMS_SLOT(x) ;
int phi_POS = dims[np_POS] + dims[p_POS] ;
double *phi = PHI_SLOT(x),
*p = P_SLOT(x), *fixef = FIXEF_SLOT(x) ;
// update ST from parm
ST_setPars(x, pars);
// update fixef, phi and p
Memcpy(fixef, pars + dims[np_POS], dims[p_POS]);
phi[0] = exp(pars[phi_POS]) ;
p[0] = pars[phi_POS + 1] ;
}
/**
* Compute twice negative marginal logliklihood to be used in optimization.
* This is different from that in lme4, so I added the prefix "cp".
*
* @param x a cpglmm object
* @param parm vector of parameters: theta, beta, log(phi) and p in order
*
* @return twice negative marginal logliklihood
*
*/
static double cp_update_dev(SEXP x, double *parm)
{
int *dims = DIMS_SLOT(x) ;
int n = dims[n_POS], q = dims[q_POS], nAGQ = dims[nAGQ_POS] ;
SEXP flistP = GET_SLOT(x, install("flist"));
double *d = DEV_SLOT(x), *y = Y_SLOT(x),
*mu = MU_SLOT(x), *phi = PHI_SLOT(x),
*p = P_SLOT(x), *pwt = PWT_SLOT(x),
*u = U_SLOT(x);
CHM_FR L = L_SLOT(x);
if (parm) cp_setPars(x, parm) ;
// find conditional mode
cp_update_u(x);
if (nAGQ < 1) error(_("nAGQ must be positive"));
if ((nAGQ > 1) & (LENGTH(flistP) != 1))
error(_("AGQ method requires a single grouping factor"));
d[ML_POS] = d[ldL2_POS];
// Laplace Approximation
if (nAGQ == 1) {
d[disc_POS] = dl2tweedie(n, y, mu, phi[0], p[0], pwt);
d[ML_POS] += d[disc_POS] + d[usqr_POS] / phi[0] ;
return d[ML_POS];
} else {
// Adaptive Gauss-Hermite quadrature
const int nl = nlevels(VECTOR_ELT(flistP, 0));
const int nre = q / nl; /* number of random effects per level */
int pos = 0, nt = 1, *fl0 = INTEGER(VECTOR_ELT(flistP, 0)),
*pointer = Alloca(nre, int);
for (int i = 0; i < nre; i++) nt *= nAGQ;
double *ghw = GHW_SLOT(x), *ghx = GHX_SLOT(x),
*uold = Memcpy(Calloc(q, double), u, q),
*z = Calloc(q, double), /* current abscissas */
*ans_tmp = Calloc(n, double), /* log data density */
*ans = Calloc(nl, double); /* loglikelihood by group */
double mm, W = 0.0; /* values needed in AGQ evaluation */
double sigma = sqrt(phi[0]);
double **tmp = Calloc(nl, double*); /* matrix of exponents as in log(exp(x1) + ...) */
for (int i = 0; i < nl; i++) tmp[i] = Calloc(nt, double);
R_CheckStack();
AZERO(pointer, nre);
while(pointer[nre - 1] < nAGQ){ /* the Cartesian product */
/* update abscissas and weights */
for(int i = 0; i < nre; ++i){
for(int j = 0; j < nl; ++j)
z[j + i * nl] = ghx[pointer[i]]; /* zeros corresp to each u */
W += log(ghw[pointer[i]]) + ghx[pointer[i]] * ghx[pointer[i]];
/* accumulate zeros and weights (const used in AGQ)*/
}
/* scale the zeros: u = u_old + sigma * L^{-1} * z */
CHM_DN cz = N_AS_CHM_DN(z, q, 1), sol;
if(!(sol = M_cholmod_solve(CHOLMOD_L, L, cz, &c)))
error(_("cholmod_solve(CHOLMOD_L) failed"));
Memcpy(z, (double *)sol->x, q);
M_cholmod_free_dense(&sol, &c);
for(int i = 0; i < q; ++i)
u[i] = uold[i] + M_SQRT2 * sigma * z[i];
/* get data likelihood */
cp_update_mu(x);
dtweedie(n, y, mu, phi[0], p[0], pwt, ans_tmp);
AZERO(ans, nl);
for (int i = 0; i < n; i++)
ans[fl0[i] - 1] += ans_tmp[i] ;
/* add the contribution from u */
for(int i = 0; i < nre; ++i)
for(int j = 0; j < nl; ++j)
ans[j] -= 0.5 * u[j + i * nl] * u[j + i * nl] / phi[0];
/* the exponent in the AGQ objective */
for(int i = 0; i < nl; ++i)
tmp[i][pos] = ans[i] + W;
pos++ ;
/* move pointer to next combination of weights and zeros */
int count = 0;
pointer[count]++;
while(pointer[count] == nAGQ && count < nre - 1){
pointer[count] = 0;
pointer[++count]++;
}
W = 0;
}
/* compute log(exp(x1) + exp(x2) + ...) */
AZERO(ans, nl);
for (int i = 0; i < nl; i++){
mm = dmax(tmp[i], nt); /* max of the exponents */
for (int k = 0; k < nt; k++)
ans[i] += exp(tmp[i][k] - mm); /* subtract max before exponentiation */
d[ML_POS] -= 2 * (log(ans[i]) + mm); /* -2 loglik */
}
/* restore values */
Memcpy(u, uold, q);
cp_update_mu(x);
Free(uold);
Free(z);
Free(ans_tmp);
Free(ans);
for (int i = 0; i < nl; i++) Free(tmp[i]);
Free(tmp);
return d[ML_POS] ;
}
}
/**
* Optimize the Laplace approximation to the deviance
* of a cpglmm object. The parameter set includes
* theta (variance component), beta (fixed effects),
* phi (scale parameter) and p (index parameter)
*
* @param x pointer to an mer object
*
* @return R_NilValue
*/
SEXP cpglmm_optimize(SEXP x)
{
SEXP ST = GET_SLOT(x, install("ST"));
int *dims = DIMS_SLOT(x);
int nt = dims[nt_POS];
int nv1 = dims[np_POS] + dims[p_POS], verb = dims[verb_POS];
int nv = nv1 +2 ;
int liv = S_iv_length(OPT, nv), lv = S_v_length(OPT, nv);
double *g = (double*)NULL, *h = (double*)NULL, fx = R_PosInf;
double *fixef = FIXEF_SLOT(x);
int *iv = Alloca(liv, int);
double *b = Alloca(2 * nv, double), *d = Alloca(nv, double),
*v = Alloca(lv, double), *xv = Alloca(nv, double);
R_CheckStack();
// retrieve parameter values from x
ST_getPars(x, xv); /* update xv for theta */
Memcpy(xv + dims[np_POS], fixef, dims[p_POS]); /*update xv for beta*/
xv[nv1] = log(PHI_SLOT(x)[0]) ;
xv[nv1+1] = P_SLOT(x)[0] ;
double eta = 1.e-5; /* estimated rel. error on computed lpdisc */
v[31] = eta; /* RFCTOL */
v[36] = eta; /* SCTOL */
v[41] = eta; /* ETA0 */
/* initialize the state vectors v and iv */
S_Rf_divset(OPT, iv, liv, lv, v);
iv[OUTLEV] = (verb < 0) ? -verb : verb;
iv[MXFCAL] = dims[mxfn_POS];
iv[MXITER] = dims[mxit_POS];
/* set the bounds to plus/minus Infty */
for (int i = 0; i < nv; i++) {
b[2 * i] = R_NegInf; b[2 * i + 1] = R_PosInf; d[i] = 1;
}
/* reset lower bounds on elements of theta_S */
for (int i = 0, pos = 0; i < nt; i++) {
int nc = *INTEGER(getAttrib(VECTOR_ELT(ST, i), R_DimSymbol));
for (int j = 0; j < nc; j++) b[pos + 2 * j] = 0;
pos += nc * (nc + 1);
}
/* reset bound for p */
b[(nv1 + 1) * 2] = BDP_SLOT(x)[0] ;
b[nv * 2 - 1] = BDP_SLOT(x)[1] ;
/* run optimization */
do {
fx = cp_update_dev(x, xv);
S_nlminb_iterate(b, d, fx, g, h, iv, liv, lv, nv, v, xv);
} while (iv[0] == 1 || iv[0] == 2);
fx = cp_update_dev(x, xv) ; //update slots using the values at the minima
dims[cvg_POS] = iv[0];
return R_NilValue;
}
/**
* Create PAX in dest.
*
* @param dest values to be calculated
* @param perm NULL or a 0-based permutation vector defining P
* @param A sparse matrix
* @param X dense matrix
* @param nc number of columns in X
*
*/
static void
P_sdmult(double *dest, const int *perm, const CHM_SP A,
const double *X, int nc)
{
int *ai = (int*)(A->i), *ap = (int*)(A->p), m = A->nrow, n = A->ncol;
double *ax = (double*)(A->x), *tmp = Calloc(m, double);
R_CheckStack();
for (int k = 0; k < nc; k++) {
AZERO(tmp, m);
for (int j = 0; j < n; j++) {
for (int p = ap[j]; p < ap[j + 1]; p++)
tmp[ai[p]] += X[j + k * n] * ax[p];
}
apply_perm(dest + k * m, tmp, perm, m);
}
Free(tmp);
}
/**
* Update the RZX and RX slots in an mer object. update_L should be
* called before update_RX
*
* @param x pointer to an mer object
*
* @return profiled deviance or REML deviance
*/
static double update_RX(SEXP x)
{
int *dims = DIMS_SLOT(x), info;
int n = dims[n_POS], p = dims[p_POS], q = dims[q_POS], s = dims[s_POS];
double *cx = Cx_SLOT(x), *d = DEV_SLOT(x),
*RZX = RZX_SLOT(x), *RX = RX_SLOT(x), *sXwt = SXWT_SLOT(x),
*WX = (double*) NULL, *X = X_SLOT(x),
mone[] = {-1,0}, one[] = {1,0}, zero[] = {0,0};
CHM_SP A = A_SLOT(x);
CHM_FR L = L_SLOT(x);
CHM_DN cRZX = N_AS_CHM_DN(RZX, q, p), ans;
R_CheckStack();
if (sXwt) { /* Create W^{1/2}GHX in WX */
WX = Calloc(n * p, double);
AZERO(WX, n * p);
for (int j = 0; j < p; j++)
for (int k = 0; k < s; k++)
for (int i = 0; i < n; i++)
WX[i + j * n] +=
sXwt[i + k * n] * X[i + n * (k + j * s)];
X = WX;
/* Replace A by C, either just the x component or the entire matrix */
if (cx) A->x = (void*)cx;
else {
A = Cm_SLOT(x);
R_CheckStack();
}
}
/* solve L %*% RZX = PAW^{1/2}GHX */
P_sdmult(RZX, (int*)L->Perm, A, X, p); /* right-hand side */
ans = M_cholmod_solve(CHOLMOD_L, L, cRZX, &c); /* solution */
Memcpy(RZX, (double*)(ans->x), q * p);
M_cholmod_free_dense(&ans, &c);
/* downdate X'X and factor */
F77_CALL(dsyrk)("U", "T", &p, &n, one, X, &n, zero, RX, &p); /* X'X */
F77_CALL(dsyrk)("U", "T", &p, &q, mone, RZX, &q, one, RX, &p);
F77_CALL(dpotrf)("U", &p, RX, &p, &info);
if (info)
error(_("Downdated X'X is not positive definite, %d."), info);
/* accumulate log(det(RX)^2) */
d[ldRX2_POS] = 0;
for (int j = 0; j < p; j++) d[ldRX2_POS] += 2 * log(RX[j * (p + 1)]);
if (WX) Free(WX);
return d[ML_POS];
}
/**
* Generate zeros and weights of Hermite polynomial of order N, for AGQ method
*
* changed from fortran in package 'glmmML'
* @param N order of the Hermite polynomial
* @param x zeros of the polynomial, abscissas for AGQ
* @param w weights used in AGQ
*
*/
static void internal_ghq(int N, double *x, double *w)
{
int NR, IT, I, K, J;
double Z = 0, HF = 0, HD = 0;
double Z0, F0, F1, P, FD, Q, WP, GD, R, R1, R2;
double HN = 1/(double)N;
double *X = Calloc(N + 1, double), *W = Calloc(N + 1, double);
for(NR = 1; NR <= N / 2; NR++){
if(NR == 1)
Z = -1.1611 + 1.46 * sqrt((double)N);
else
Z -= HN * (N/2 + 1 - NR);
for (IT = 0; IT <= GHQ_MAXIT; IT++) {
Z0 = Z;
F0 = 1.0;
F1 = 2.0 * Z;
for(K = 2; K <= N; ++K){
HF = 2.0 * Z * F1 - 2.0 * (double)(K - 1.0) * F0;
HD = 2.0 * K * F1;
F0 = F1;
F1 = HF;
}
P = 1.0;
for(I = 1; I <= NR-1; ++I){
P *= (Z - X[I]);
}
FD = HF / P;
Q = 0.0;
for(I = 1; I <= NR - 1; ++I){
WP = 1.0;
for(J = 1; J <= NR - 1; ++J){
if(J != I) WP *= ( Z - X[J] );
}
Q += WP;
}
GD = (HD-Q*FD)/P;
Z -= (FD/GD);
if (fabs((Z - Z0) / Z) < GHQ_EPS) break;
}
X[NR] = Z;
X[N+1-NR] = -Z;
R=1.0;
for(K = 1; K <= N; ++K){
R *= (2.0 * (double)K );
}
W[N+1-NR] = W[NR] = 3.544907701811 * R / (HD*HD);
}
if( N % 2 ){
R1=1.0;
R2=1.0;
for(J = 1; J <= N; ++J){
R1=2.0*R1*J;
if(J>=(N+1)/2) R2 *= J;
}
W[N/2+1]=0.88622692545276*R1/(R2*R2);
X[N/2+1]=0.0;
}
Memcpy(x, X + 1, N);
Memcpy(w, W + 1, N);
if(X) Free(X);
if(W) Free(W);
}
/**
* Update the contents of the ranef slot in an mer object using the
* current contents of the u and ST slots.
*
* b = T %*% S %*% t(P) %*% u
*
* @param x an mer object
*/
static void update_ranef(SEXP x)
{
int *Gp = Gp_SLOT(x), *dims = DIMS_SLOT(x), *perm = PERM_VEC(x);
int nt = dims[nt_POS], q = dims[q_POS];
double *b = RANEF_SLOT(x), *u = U_SLOT(x), one[] = {1,0};
int *nc = Alloca(nt, int), *nlev = Alloca(nt, int);
double **st = Alloca(nt, double*);
R_CheckStack();
ST_nc_nlev(GET_SLOT(x, install("ST")), Gp, st, nc, nlev);
/* inverse permutation */
for (int i = 0; i < q; i++) b[perm[i]] = u[i];
for (int i = 0; i < nt; i++) {
for (int k = 0; k < nc[i]; k++) { /* multiply by \tilde{S}_i */
double dd = st[i][k * (nc[i] + 1)];
int base = Gp[i] + k * nlev[i];
for (int kk = 0; kk < nlev[i]; kk++) b[base + kk] *= dd;
}
if (nc[i] > 1) { /* multiply by \tilde{T}_i */
F77_CALL(dtrmm)("R", "L", "T", "U", nlev + i, nc + i, one,
st[i], nc + i, b + Gp[i], nlev + i);
}
}
}
/*******************************************************
* functions callable from R *
********************************************************/
/**
* R callable function to update L
*
* @param x a R list object
*
* @return penalized, weighted residual sum of squares
*/
SEXP cpglmm_update_L(SEXP x){
return ScalarReal(cp_update_L(x));
}
/**
* R callable function to update mu
*
* @param x a R list object
*
* @return penalized, weighted residual sum of squares
*/
SEXP cpglmm_update_mu(SEXP x){
return ScalarReal(cp_update_mu(x));
}
/**
* R callable function to update u
*
* @param x a R list object
*
* @return number of iterations to convergence (0 for non-convergence)
*/
SEXP cpglmm_update_u(SEXP x){
return ScalarInteger(cp_update_u(x));
}
/**
* R callable function to update deviance
*
* @param x a cpglmm object
* @param pm vector of parameters: theta, beta, log(phi) and p in order
*
* @return twice negative loglikelihood
*/
SEXP cpglmm_update_dev(SEXP x, SEXP pm){
return ScalarReal(cp_update_dev(x, (pm != R_NilValue) ? REAL(pm) : (double*) NULL));
}
/**
* R callable function to update parameters
*
* @param x a cpglmm object
* @param pm vector of parameters: theta, beta, log(phi) and p in order
*
*/
SEXP cpglmm_setPars(SEXP x, SEXP pm){
cp_setPars(x, REAL(pm)) ;
return R_NilValue ;
}
/**
* Extract the parameters from the ST slot of an mer object
*
* @param x an mer object
*
* @return pointer to a REAL vector
*/
SEXP cpglmm_ST_getPars(SEXP x)
{
SEXP ans = PROTECT(allocVector(REALSXP, DIMS_SLOT(x)[np_POS]));
ST_getPars(x, REAL(ans));
UNPROTECT(1);
return ans;
}
/**
* Return a list of (upper) Cholesky factors from the ST list
*
* @param x an mer object
*
* @return a list of upper Cholesky factors
*/
SEXP cpglmm_ST_chol(SEXP x)
{
SEXP ans = PROTECT(duplicate(GET_SLOT(x, install("ST"))));
int nt = DIMS_SLOT(x)[nt_POS];
int *nc = Alloca(nt, int), *nlev = Alloca(nt, int);
double **st = Alloca(nt, double*);
R_CheckStack();
ST_nc_nlev(ans, Gp_SLOT(x), st, nc, nlev);
for (int k = 0; k < nt; k++) {
if (nc[k] > 1) { /* nothing to do for nc[k] == 1 */
int nck = nc[k], nckp1 = nc[k] + 1;
double *stk = st[k];
for (int j = 0; j < nck; j++) {
double dd = stk[j * nckp1]; /* diagonal el */
for (int i = j + 1; i < nck; i++) {
stk[j + i * nck] = dd * stk[i + j * nck];
stk[i + j * nck] = 0;
}
}
}
}
UNPROTECT(1);
return ans;
}
/**
* Externally callable update_ranef.
* Update the contents of the ranef slot in an mer object. For a
* linear mixed model the conditional estimates of the fixed effects
* and the conditional mode of u are evaluated first.
*
* @param x an mer object
*
* @return R_NilValue
*/
SEXP cpglmm_update_ranef(SEXP x)
{
update_ranef(x);
return R_NilValue;
}
/**
* Externally callable update_RX
*
* @param x pointer to an mer object
*
* @return profiled deviance or REML deviance
*/
SEXP cpglmm_update_RX(SEXP x)
{
return ScalarReal(update_RX(x));
}
/**
* Return zeros and weights of Hermite polynomial of order n as a list
*
* @param np pointer to a scalar integer SEXP
* @return a list with two components, the abscissas and the weights.
*
*/
SEXP cpglmm_ghq(SEXP np)
{
int n = asInteger(np);
SEXP ans = PROTECT(allocVector(VECSXP, 2));
if (n < 1) n = 1;
SET_VECTOR_ELT(ans, 0, allocVector(REALSXP, n ));
SET_VECTOR_ELT(ans, 1, allocVector(REALSXP, n ));
internal_ghq(n, REAL(VECTOR_ELT(ans, 0)), REAL(VECTOR_ELT(ans, 1)));
UNPROTECT(1);
return ans;
}
/************************************************************
* The following functions are simply copied from
* lme4.0 since it is replaced by a new implementation
* that is no longer compatible with cplm
************************************************************/
/**
* Evaluate starting estimates for the elements of ST
*
* @param ST pointers to the nt ST factorizations of the diagonal
* elements of Sigma
* @param Gpp length nt+1 vector of group pointers for the rows of Zt
* @param Zt transpose of Z matrix
*
*/
SEXP mer_ST_initialize(SEXP ST, SEXP Gpp, SEXP Zt)
{
int *Gp = INTEGER(Gpp),
*Zdims = INTEGER(GET_SLOT(Zt, install("Dim"))),
*zi = INTEGER(GET_SLOT(Zt, install("i"))), nt = LENGTH(ST);
int *nc = Alloca(nt, int), *nlev = Alloca(nt, int),
nnz = INTEGER(GET_SLOT(Zt, install("p")))[Zdims[1]];
double *rowsqr = Calloc(Zdims[0], double),
**st = Alloca(nt, double*),
*zx = REAL(GET_SLOT(Zt, install("x")));
R_CheckStack();
ST_nc_nlev(ST, Gp, st, nc, nlev);
AZERO(rowsqr, Zdims[0]);
for (int i = 0; i < nnz; i++) rowsqr[zi[i]] += zx[i] * zx[i];
for (int i = 0; i < nt; i++) {
AZERO(st[i], nc[i] * nc[i]);
for (int j = 0; j < nc[i]; j++) {
double *stij = st[i] + j * (nc[i] + 1);
for (int k = 0; k < nlev[i]; k++)
*stij += rowsqr[Gp[i] + j * nlev[i] + k];
*stij = sqrt(nlev[i]/(0.375 * *stij));
}
}
Free(rowsqr);
return R_NilValue;
}
/**
* Create and initialize L
*
* @param CmP pointer to the model matrix for the orthogonal random
* effects (transposed)
*
* @return L
*/
SEXP mer_create_L(SEXP CmP)
{
double one[] = {1, 0};
CHM_SP Cm = AS_CHM_SP(CmP);
CHM_FR L;
R_CheckStack();
L = M_cholmod_analyze(Cm, &c);
if (!M_cholmod_factorize_p(Cm, one, (int*)NULL, 0 /*fsize*/, L, &c))
error(_("cholmod_factorize_p failed: status %d, minor %d from ncol %d"),
c.status, L->minor, L->n);
return M_chm_factor_to_SEXP(L, 1);
}
/**
* Extract the conditional variances of the random effects in an mer
* object. Some people called these posterior variances, hence the name.
*
* @param x pointer to an mer object
* @param which pointer to a logical vector
*
* @return pointer to a list of arrays
*/
SEXP mer_postVar(SEXP x, SEXP which)
{
int *Gp = Gp_SLOT(x), *dims = DIMS_SLOT(x), *ww;
SEXP ans, flistP = GET_SLOT(x, install("flist"));
const int nf = LENGTH(flistP), nt = dims[nt_POS], q = dims[q_POS];
int nr = 0, pos = 0;
/* int *asgn = INTEGER(getAttrib(flistP, install("assign"))); */
double *vv, one[] = {1,0}, sc;
CHM_SP sm1, sm2;
CHM_DN dm1;
CHM_FR L = L_SLOT(x);
int *Perm = (int*)(L->Perm), *iperm = Calloc(q, int),
*nc = Alloca(nt, int), *nlev = Alloca(nt, int);
double **st = Alloca(nt, double*);
R_CheckStack();
/* FIXME: Write the code for nt != nf */
if (nt != nf) error(_("Code not written yet"));
/* determine length of list to return */
if (!isLogical(which) || LENGTH(which) != nf)
error(_("which must be a logical vector of length %d"), nf);
ww = LOGICAL(which);
for (int i = 0; i < nt; i++) if (ww[i]) nr++;
if (!nr) return(allocVector(VECSXP, 0));
ans = PROTECT(allocVector(VECSXP, nr));
ST_nc_nlev(GET_SLOT(x, install("ST")), Gp, st, nc, nlev);
for (int j = 0; j < q; j++) iperm[Perm[j]] = j; /* inverse permutation */
sc = dims[useSc_POS] ?
(DEV_SLOT(x)[dims[isREML_POS] ? sigmaREML_POS : sigmaML_POS]) : 1;
for (int i = 0; i < nt; i++) {
if (ww[i]) {
const int nci = nc[i];
const int ncisqr = nci * nci;
CHM_SP rhs = M_cholmod_allocate_sparse(q, nci, nci,
1/*sorted*/, 1/*packed*/,
0/*stype*/, CHOLMOD_REAL, &c);
SET_VECTOR_ELT(ans, pos, alloc3DArray(REALSXP, nci, nci, nlev[i]));
vv = REAL(VECTOR_ELT(ans, pos));
pos++;
for (int j = 0; j <= nci; j++) ((int *)(rhs->p))[j] = j;
for (int j = 0; j < nci; j++)
((double *)(rhs->x))[j] = st[i][j * (nci + 1)] * sc;
for (int k = 0; k < nlev[i]; k++) {
double *vvk = vv + k * ncisqr;
for (int j = 0; j < nci; j++)
((int*)(rhs->i))[j] = iperm[Gp[i] + k + j * nlev[i]];
sm1 = M_cholmod_spsolve(CHOLMOD_L, L, rhs, &c);
sm2 = M_cholmod_transpose(sm1, 1 /*values*/, &c);
M_cholmod_free_sparse(&sm1, &c);
sm1 = M_cholmod_aat(sm2, (int*)NULL, (size_t)0, 1 /*mode*/, &c);
dm1 = M_cholmod_sparse_to_dense(sm1, &c);
M_cholmod_free_sparse(&sm1, &c); M_cholmod_free_sparse(&sm2, &c);
Memcpy(vvk, (double*)(dm1->x), ncisqr);
M_cholmod_free_dense(&dm1, &c);
if (nci > 1) {
F77_CALL(dtrmm)("L", "L", "N", "U", nc + i, nc + i,
one, st[i], nc + i, vvk, nc + i);
F77_CALL(dtrmm)("R", "L", "T", "U", nc + i, nc + i,
one, st[i], nc + i, vvk, nc + i);
}
}
M_cholmod_free_sparse(&rhs, &c);
}
}
Free(iperm);
UNPROTECT(1);
return ans;
}
/**
* Update the projections of the response vector onto the column
* spaces of the random effects and the fixed effects. This function
* is needed separately for the one-argument form of the anova function.
*
* @param x an mer object
* @param pb position to store the random-effects projection
* @param pbeta position to store the fixed-effects projection
*/
static void lmm_update_projection(SEXP x, double *pb, double *pbeta)
{
int *dims = DIMS_SLOT(x), i1 = 1;
int n = dims[n_POS], p = dims[p_POS], q = dims[q_POS];
double *WX = (double*) NULL, *X = X_SLOT(x),
*cx = Cx_SLOT(x), *d = DEV_SLOT(x),
*off = OFFSET_SLOT(x), *RZX = RZX_SLOT(x),
*RX = RX_SLOT(x), *sXwt = SXWT_SLOT(x),
*wy = (double*)NULL, *y = Y_SLOT(x),
mone[] = {-1,0}, one[] = {1,0}, zero[] = {0,0};
CHM_SP A = A_SLOT(x);
CHM_FR L = L_SLOT(x);
CHM_DN cpb = N_AS_CHM_DN(pb, q, 1), sol;
R_CheckStack();
wy = Calloc(n, double);
for (int i = 0; i < n; i++) wy[i] = y[i] - (off ? off[i] : 0);
if (sXwt) { /* Replace X by weighted X and weight wy */
if (!cx) error(_("Cx slot has zero length when sXwt does not."));
A->x = (void*)cx;
WX = Calloc(n * p, double);
for (int i = 0; i < n; i++) {
wy[i] *= sXwt[i];
for (int j = 0; j < p; j++)
WX[i + j * n] = sXwt[i] * X[i + j * n];
}
X = WX;
}
/* solve L del1 = PAy */
P_sdmult(pb, (int*)L->Perm, A, wy, 1);
sol = M_cholmod_solve(CHOLMOD_L, L, cpb, &c);
Memcpy(pb, (double*)sol->x, q);
M_cholmod_free_dense(&sol, &c);
/* solve RX' del2 = X'y - RZX'del1 */
F77_CALL(dgemv)("T", &n, &p, one, X, &n,
wy, &i1, zero, pbeta, &i1);
F77_CALL(dgemv)("T", &q, &p, mone, RZX, &q,
pb, &i1, one, pbeta, &i1);
F77_CALL(dtrsv)("U", "T", "N", &p, RX, &p, pbeta, &i1);
d[pwrss_POS] = sqr_length(wy, n)
- (sqr_length(pbeta, p) + sqr_length(pb, q));
if (d[pwrss_POS] < 0)
error(_("Calculated PWRSS for a LMM is negative"));
Free(wy);
if (WX) Free(WX);
}
/**
* Externally callable lmm_update_projection.
* Create the projections onto the column spaces of the random effects
* and the fixed effects.
*
* @param x an mer object
*
* @return a list with two elements, both REAL vectors
*/
SEXP mer_update_projection(SEXP x)
{
SEXP ans = PROTECT(allocVector(VECSXP, 2));
int *dims = DIMS_SLOT(x);
SET_VECTOR_ELT(ans, 0, allocVector(REALSXP, dims[q_POS]));
SET_VECTOR_ELT(ans, 1, allocVector(REALSXP, dims[p_POS]));
lmm_update_projection(x,
/* pb = */
REAL(VECTOR_ELT(ans, 0)),
/* pbeta = */
REAL(VECTOR_ELT(ans, 1)));
UNPROTECT(1);
return ans;
}