Raw File
CodeGen_X86.cpp
#include <iostream>

#include "CodeGen_X86.h"
#include "ConciseCasts.h"
#include "Debug.h"
#include "IRMatch.h"
#include "IRMutator.h"
#include "IROperator.h"
#include "JITModule.h"
#include "LLVM_Headers.h"
#include "Param.h"
#include "Util.h"
#include "Var.h"

namespace Halide {
namespace Internal {

using std::string;
using std::vector;

using namespace Halide::ConciseCasts;
using namespace llvm;

namespace {
// Populate feature flags in a target according to those implied by
// existing flags, so that instruction patterns can just check for the
// oldest feature flag that supports an instruction.
Target complete_x86_target(Target t) {
    if (t.has_feature(Target::AVX512_Cannonlake) ||
        t.has_feature(Target::AVX512_Skylake) ||
        t.has_feature(Target::AVX512_KNL)) {
        t.set_feature(Target::AVX2);
    }
    if (t.has_feature(Target::AVX2)) {
        t.set_feature(Target::AVX);
    }
    if (t.has_feature(Target::AVX)) {
        t.set_feature(Target::SSE41);
    }
    return t;
}
}  // namespace

CodeGen_X86::CodeGen_X86(Target t)
    : CodeGen_Posix(complete_x86_target(t)) {

#if !defined(WITH_X86)
    user_error << "x86 not enabled for this build of Halide.\n";
#endif

    user_assert(llvm_X86_enabled) << "llvm build not configured with X86 target enabled.\n";
}

namespace {

// i32(i16_a)*i32(i16_b) +/- i32(i16_c)*i32(i16_d) can be done by
// interleaving a, c, and b, d, and then using pmaddwd. We
// recognize it here, and implement it in the initial module.
bool should_use_pmaddwd(const Expr &a, const Expr &b, vector<Expr> &result) {
    Type t = a.type();
    internal_assert(b.type() == t);

    const Mul *ma = a.as<Mul>();
    const Mul *mb = b.as<Mul>();

    if (!(ma && mb && t.is_int() && t.bits() == 32 && (t.lanes() >= 4))) {
        return false;
    }

    Type narrow = t.with_bits(16);
    vector<Expr> args = {lossless_cast(narrow, ma->a),
                         lossless_cast(narrow, ma->b),
                         lossless_cast(narrow, mb->a),
                         lossless_cast(narrow, mb->b)};
    if (!args[0].defined() || !args[1].defined() ||
        !args[2].defined() || !args[3].defined()) {
        return false;
    }

    result.swap(args);
    return true;
}

}  // namespace

void CodeGen_X86::visit(const Add *op) {
    vector<Expr> matches;
    if (should_use_pmaddwd(op->a, op->b, matches)) {
        codegen(Call::make(op->type, "pmaddwd", matches, Call::Extern));
    } else {
        CodeGen_Posix::visit(op);
    }
}

void CodeGen_X86::visit(const Sub *op) {
    vector<Expr> matches;
    if (should_use_pmaddwd(op->a, op->b, matches)) {
        // Negate one of the factors in the second expression
        if (is_const(matches[2])) {
            matches[2] = -matches[2];
        } else {
            matches[3] = -matches[3];
        }
        codegen(Call::make(op->type, "pmaddwd", matches, Call::Extern));
    } else {
        CodeGen_Posix::visit(op);
    }
}

void CodeGen_X86::visit(const Mul *op) {

#if LLVM_VERSION < 110
    // Widening integer multiply of non-power-of-two vector sizes is
    // broken in older llvms for older x86:
    // https://bugs.llvm.org/show_bug.cgi?id=44976
    const int lanes = op->type.lanes();
    if (!target.has_feature(Target::SSE41) &&
        (lanes & (lanes - 1)) &&
        (op->type.bits() >= 32) &&
        !op->type.is_float()) {
        // Any fancy shuffles to pad or slice into smaller vectors
        // just gets undone by LLVM and retriggers the bug. Just
        // scalarize.
        vector<Expr> result;
        for (int i = 0; i < lanes; i++) {
            result.emplace_back(Shuffle::make_extract_element(op->a, i) *
                                Shuffle::make_extract_element(op->b, i));
        }
        codegen(Shuffle::make_concat(result));
        return;
    }
#endif

    return CodeGen_Posix::visit(op);
}

void CodeGen_X86::visit(const GT *op) {
    Type t = op->a.type();

    if (t.is_vector() &&
        upgrade_type_for_arithmetic(t) == t) {
        // Non-native vector widths get legalized poorly by llvm. We
        // split it up ourselves.

        int slice_size = vector_lanes_for_slice(t);

        Value *a = codegen(op->a), *b = codegen(op->b);
        vector<Value *> result;
        for (int i = 0; i < op->type.lanes(); i += slice_size) {
            Value *sa = slice_vector(a, i, slice_size);
            Value *sb = slice_vector(b, i, slice_size);
            Value *slice_value;
            if (t.is_float()) {
                slice_value = builder->CreateFCmpOGT(sa, sb);
            } else if (t.is_int()) {
                slice_value = builder->CreateICmpSGT(sa, sb);
            } else {
                slice_value = builder->CreateICmpUGT(sa, sb);
            }
            result.push_back(slice_value);
        }

        value = concat_vectors(result);
        value = slice_vector(value, 0, t.lanes());
    } else {
        CodeGen_Posix::visit(op);
    }
}

void CodeGen_X86::visit(const EQ *op) {
    Type t = op->a.type();

    if (t.is_vector() &&
        upgrade_type_for_arithmetic(t) == t) {
        // Non-native vector widths get legalized poorly by llvm. We
        // split it up ourselves.

        int slice_size = vector_lanes_for_slice(t);

        Value *a = codegen(op->a), *b = codegen(op->b);
        vector<Value *> result;
        for (int i = 0; i < op->type.lanes(); i += slice_size) {
            Value *sa = slice_vector(a, i, slice_size);
            Value *sb = slice_vector(b, i, slice_size);
            Value *slice_value;
            if (t.is_float()) {
                slice_value = builder->CreateFCmpOEQ(sa, sb);
            } else {
                slice_value = builder->CreateICmpEQ(sa, sb);
            }
            result.push_back(slice_value);
        }

        value = concat_vectors(result);
        value = slice_vector(value, 0, t.lanes());
    } else {
        CodeGen_Posix::visit(op);
    }
}

void CodeGen_X86::visit(const LT *op) {
    codegen(op->b > op->a);
}

void CodeGen_X86::visit(const LE *op) {
    codegen(!(op->a > op->b));
}

void CodeGen_X86::visit(const GE *op) {
    codegen(!(op->b > op->a));
}

void CodeGen_X86::visit(const NE *op) {
    codegen(!(op->a == op->b));
}

void CodeGen_X86::visit(const Select *op) {
    if (op->condition.type().is_vector()) {
        // LLVM handles selects on vector conditions much better at native width
        Value *cond = codegen(op->condition);
        Value *true_val = codegen(op->true_value);
        Value *false_val = codegen(op->false_value);
        Type t = op->true_value.type();
        int slice_size = vector_lanes_for_slice(t);

        vector<Value *> result;
        for (int i = 0; i < t.lanes(); i += slice_size) {
            Value *st = slice_vector(true_val, i, slice_size);
            Value *sf = slice_vector(false_val, i, slice_size);
            Value *sc = slice_vector(cond, i, slice_size);
            Value *slice_value = builder->CreateSelect(sc, st, sf);
            result.push_back(slice_value);
        }

        value = concat_vectors(result);
        value = slice_vector(value, 0, t.lanes());
    } else {
        CodeGen_Posix::visit(op);
    }
}

void CodeGen_X86::visit(const Cast *op) {

    if (!op->type.is_vector()) {
        // We only have peephole optimizations for vectors in here.
        CodeGen_Posix::visit(op);
        return;
    }

    vector<Expr> matches;

    struct Pattern {
        Target::Feature feature;
        bool wide_op;
        Type type;
        int min_lanes;
        string intrin;
        Expr pattern;
    };

    static Pattern patterns[] = {
        {Target::AVX2, true, Int(8, 32), 17, "llvm.sadd.sat.v32i8",
         i8_sat(wild_i16x_ + wild_i16x_)},
        {Target::FeatureEnd, true, Int(8, 16), 9, "llvm.sadd.sat.v16i8",
         i8_sat(wild_i16x_ + wild_i16x_)},
        {Target::FeatureEnd, true, Int(8, 8), 0, "llvm.sadd.sat.v8i8",
         i8_sat(wild_i16x_ + wild_i16x_)},
        {Target::AVX2, true, Int(8, 32), 17, "llvm.ssub.sat.v32i8",
         i8_sat(wild_i16x_ - wild_i16x_)},
        {Target::FeatureEnd, true, Int(8, 16), 9, "llvm.ssub.sat.v16i8",
         i8_sat(wild_i16x_ - wild_i16x_)},
        {Target::FeatureEnd, true, Int(8, 8), 0, "llvm.ssub.sat.v8i8",
         i8_sat(wild_i16x_ - wild_i16x_)},
        {Target::AVX2, true, Int(16, 16), 9, "llvm.sadd.sat.v16i16",
         i16_sat(wild_i32x_ + wild_i32x_)},
        {Target::FeatureEnd, true, Int(16, 8), 0, "llvm.sadd.sat.v8i16",
         i16_sat(wild_i32x_ + wild_i32x_)},
        {Target::AVX2, true, Int(16, 16), 9, "llvm.ssub.sat.v16i16",
         i16_sat(wild_i32x_ - wild_i32x_)},
        {Target::FeatureEnd, true, Int(16, 8), 0, "llvm.ssub.sat.v8i16",
         i16_sat(wild_i32x_ - wild_i32x_)},

        // Some of the instructions referred to below only appear with
        // AVX2, but LLVM generates better AVX code if you give it
        // full 256-bit vectors and let it do the slicing up into
        // individual instructions itself. This is why we use
        // Target::AVX instead of Target::AVX2 as the feature flag
        // requirement.
        {Target::AVX, true, UInt(8, 32), 17, "paddusbx32",
         u8_sat(wild_u16x_ + wild_u16x_)},
        {Target::FeatureEnd, true, UInt(8, 16), 0, "paddusbx16",
         u8_sat(wild_u16x_ + wild_u16x_)},
        {Target::AVX, true, UInt(8, 32), 17, "psubusbx32",
         u8(max(wild_i16x_ - wild_i16x_, 0))},
        {Target::FeatureEnd, true, UInt(8, 16), 0, "psubusbx16",
         u8(max(wild_i16x_ - wild_i16x_, 0))},
        {Target::AVX, true, UInt(16, 16), 9, "padduswx16",
         u16_sat(wild_u32x_ + wild_u32x_)},
        {Target::FeatureEnd, true, UInt(16, 8), 0, "padduswx8",
         u16_sat(wild_u32x_ + wild_u32x_)},
        {Target::AVX, true, UInt(16, 16), 9, "psubuswx16",
         u16(max(wild_i32x_ - wild_i32x_, 0))},
        {Target::FeatureEnd, true, UInt(16, 8), 0, "psubuswx8",
         u16(max(wild_i32x_ - wild_i32x_, 0))},

        // Only use the avx2 version if we have > 8 lanes
        {Target::AVX2, true, Int(16, 16), 9, "llvm.x86.avx2.pmulh.w",
         i16((wild_i32x_ * wild_i32x_) / 65536)},
        {Target::AVX2, true, UInt(16, 16), 9, "llvm.x86.avx2.pmulhu.w",
         u16((wild_u32x_ * wild_u32x_) / 65536)},
        {Target::AVX2, true, Int(16, 16), 9, "llvm.x86.avx2.pmul.hr.sw",
         i16((((wild_i32x_ * wild_i32x_) + 16384)) / 32768)},

        {Target::FeatureEnd, true, Int(16, 8), 0, "llvm.x86.sse2.pmulh.w",
         i16((wild_i32x_ * wild_i32x_) / 65536)},
        {Target::FeatureEnd, true, UInt(16, 8), 0, "llvm.x86.sse2.pmulhu.w",
         u16((wild_u32x_ * wild_u32x_) / 65536)},
        {Target::SSE41, true, Int(16, 8), 0, "llvm.x86.ssse3.pmul.hr.sw.128",
         i16((((wild_i32x_ * wild_i32x_) + 16384)) / 32768)},
        // LLVM 6.0+ require using helpers from x86.ll, x86_avx.ll
        {Target::AVX2, true, UInt(8, 32), 17, "pavgbx32",
         u8(((wild_u16x_ + wild_u16x_) + 1) / 2)},
        {Target::FeatureEnd, true, UInt(8, 16), 0, "pavgbx16",
         u8(((wild_u16x_ + wild_u16x_) + 1) / 2)},
        {Target::AVX2, true, UInt(16, 16), 9, "pavgwx16",
         u16(((wild_u32x_ + wild_u32x_) + 1) / 2)},
        {Target::FeatureEnd, true, UInt(16, 8), 0, "pavgwx8",
         u16(((wild_u32x_ + wild_u32x_) + 1) / 2)},
        {Target::AVX2, false, Int(16, 16), 9, "packssdwx16",
         i16_sat(wild_i32x_)},
        {Target::FeatureEnd, false, Int(16, 8), 0, "packssdwx8",
         i16_sat(wild_i32x_)},
        {Target::AVX2, false, Int(8, 32), 17, "packsswbx32",
         i8_sat(wild_i16x_)},
        {Target::FeatureEnd, false, Int(8, 16), 0, "packsswbx16",
         i8_sat(wild_i16x_)},
        {Target::AVX2, false, UInt(8, 32), 17, "packuswbx32",
         u8_sat(wild_i16x_)},
        {Target::FeatureEnd, false, UInt(8, 16), 0, "packuswbx16",
         u8_sat(wild_i16x_)},
        {Target::AVX2, false, UInt(16, 16), 9, "packusdwx16",
         u16_sat(wild_i32x_)},
        {Target::SSE41, false, UInt(16, 8), 0, "packusdwx8",
         u16_sat(wild_i32x_)}};

    for (size_t i = 0; i < sizeof(patterns) / sizeof(patterns[0]); i++) {
        const Pattern &pattern = patterns[i];

        if (!target.has_feature(pattern.feature)) {
            continue;
        }

        if (op->type.lanes() < pattern.min_lanes) {
            continue;
        }

        if (expr_match(pattern.pattern, op, matches)) {
            bool match = true;
            if (pattern.wide_op) {
                // Try to narrow the matches to the target type.
                for (size_t i = 0; i < matches.size(); i++) {
                    matches[i] = lossless_cast(op->type, matches[i]);
                    if (!matches[i].defined()) {
                        match = false;
                    }
                }
            }
            if (match) {
                value = call_intrin(op->type, pattern.type.lanes(), pattern.intrin, matches);
                return;
            }
        }
    }

    // Workaround for https://llvm.org/bugs/show_bug.cgi?id=24512
    // LLVM uses a numerically unstable method for vector
    // uint32->float conversion before AVX.
    if (op->value.type().element_of() == UInt(32) &&
        op->type.is_float() &&
        op->type.is_vector() &&
        !target.has_feature(Target::AVX)) {
        Type signed_type = Int(32, op->type.lanes());

        // Convert the top 31 bits to float using the signed version
        Expr top_bits = cast(signed_type, op->value / 2);
        top_bits = cast(op->type, top_bits);

        // Convert the bottom bit
        Expr bottom_bit = cast(signed_type, op->value % 2);
        bottom_bit = cast(op->type, bottom_bit);

        // Recombine as floats
        codegen(top_bits + top_bits + bottom_bit);
        return;
    }

    CodeGen_Posix::visit(op);
}

void CodeGen_X86::visit(const Call *op) {
    if (op->is_intrinsic(Call::mulhi_shr) &&
        op->type.is_vector() && op->type.bits() == 16) {
        internal_assert(op->args.size() == 3);
        Expr p;
        if (op->type.is_uint()) {
            p = u16(u32(op->args[0]) * u32(op->args[1]) / 65536);
        } else {
            p = i16(i32(op->args[0]) * i32(op->args[1]) / 65536);
        }
        const UIntImm *shift = op->args[2].as<UIntImm>();
        internal_assert(shift != nullptr) << "Third argument to mulhi_shr intrinsic must be an unsigned integer immediate.\n";
        if (shift->value != 0) {
            p = p >> shift->value;
        }
        value = codegen(p);
        return;
    }

    CodeGen_Posix::visit(op);
}

void CodeGen_X86::codegen_vector_reduce(const VectorReduce *op, const Expr &init) {
    const int factor = op->value.type().lanes() / op->type.lanes();

    if (op->type.is_int() &&
        op->type.bits() == 32 &&
        factor == 2 &&
        op->op == VectorReduce::Add) {
        Type narrower = Int(16, op->value.type().lanes());
        Expr a, b;
        if (const Mul *mul = op->value.as<Mul>()) {
            a = lossless_cast(narrower, mul->a);
            b = lossless_cast(narrower, mul->b);
        } else {
            // One could do a horizontal widening addition with
            // pmaddwd against a vector of ones. Currently disabled
            // because I haven't found case where it's clearly better.

            //a = lossless_cast(narrower, op->value);
            //b = make_const(narrower, 1);
        }
        if (a.defined() && b.defined()) {
            if ((target.has_feature(Target::AVX512_Skylake) ||
                 target.has_feature(Target::AVX512_Cannonlake)) &&
                op->type.lanes() > 8) {
                // These generations have the AVX512_BW extension
                value = call_intrin(op->type, 16, "llvm.x86.avx512.pmaddw.d.512", {a, b});
            } else if (target.has_feature(Target::AVX2) && op->type.lanes() > 4) {
                value = call_intrin(op->type, 8, "llvm.x86.avx2.pmadd.wd", {a, b});
            } else {
                value = call_intrin(op->type, 4, "llvm.x86.sse2.pmadd.wd", {a, b});
            }
            if (init.defined()) {
                Value *x = value;
                Value *y = codegen(init);
                value = builder->CreateAdd(x, y);
            }
            return;
        }
    }

    CodeGen_Posix::codegen_vector_reduce(op, init);
}

string CodeGen_X86::mcpu() const {
    if (target.has_feature(Target::AVX512_Cannonlake)) {
        return "cannonlake";
    } else if (target.has_feature(Target::AVX512_Skylake)) {
        return "skylake-avx512";
    } else if (target.has_feature(Target::AVX512_KNL)) {
        return "knl";
    } else if (target.has_feature(Target::AVX2)) {
        return "haswell";
    } else if (target.has_feature(Target::AVX)) {
        return "corei7-avx";
    } else if (target.has_feature(Target::SSE41)) {
        // We want SSE4.1 but not SSE4.2, hence "penryn" rather than "corei7"
        return "penryn";
    } else {
        // Default should not include SSSE3, hence "k8" rather than "core2"
        return "k8";
    }
}

string CodeGen_X86::mattrs() const {
    std::string features;
    std::string separator;
    if (target.has_feature(Target::FMA)) {
        features += "+fma";
        separator = ",";
    }
    if (target.has_feature(Target::FMA4)) {
        features += separator + "+fma4";
        separator = ",";
    }
    if (target.has_feature(Target::F16C)) {
        features += separator + "+f16c";
        separator = ",";
    }
    if (target.has_feature(Target::AVX512) ||
        target.has_feature(Target::AVX512_KNL) ||
        target.has_feature(Target::AVX512_Skylake) ||
        target.has_feature(Target::AVX512_Cannonlake)) {
        features += separator + "+avx512f,+avx512cd";
        separator = ",";
        if (target.has_feature(Target::AVX512_KNL)) {
            features += ",+avx512pf,+avx512er";
        }
        if (target.has_feature(Target::AVX512_Skylake) ||
            target.has_feature(Target::AVX512_Cannonlake)) {
            features += ",+avx512vl,+avx512bw,+avx512dq";
        }
        if (target.has_feature(Target::AVX512_Cannonlake)) {
            features += ",+avx512ifma,+avx512vbmi";
        }
    }
    return features;
}

bool CodeGen_X86::use_soft_float_abi() const {
    return false;
}

int CodeGen_X86::native_vector_bits() const {
    if (target.has_feature(Target::AVX512) ||
        target.has_feature(Target::AVX512_Skylake) ||
        target.has_feature(Target::AVX512_KNL) ||
        target.has_feature(Target::AVX512_Cannonlake)) {
        return 512;
    } else if (target.has_feature(Target::AVX) ||
               target.has_feature(Target::AVX2)) {
        return 256;
    } else {
        return 128;
    }
}

int CodeGen_X86::vector_lanes_for_slice(const Type &t) const {
    // We don't want to pad all the way out to natural_vector_size,
    // because llvm generates crappy code. Better to use a smaller
    // type if we can.
    int vec_bits = t.lanes() * t.bits();
    int natural_vec_bits = target.natural_vector_size(t) * t.bits();
    // clang-format off
    int slice_bits = ((vec_bits > 256 && natural_vec_bits > 256) ? 512 :
                      (vec_bits > 128 && natural_vec_bits > 128) ? 256 :
                                                                   128);
    // clang-format on
    return slice_bits / t.bits();
}

llvm::Type *CodeGen_X86::llvm_type_of(const Type &t) const {
    if (t.is_float() && t.bits() < 32) {
        // LLVM as of August 2019 has all sorts of issues in the x86
        // backend for half types. It injects expensive calls to
        // convert between float and half for seemingly no reason
        // (e.g. to do a select), and bitcasting to int16 doesn't
        // help, because it simplifies away the bitcast for you.
        // See: https://bugs.llvm.org/show_bug.cgi?id=43065
        // and: https://github.com/halide/Halide/issues/4166
        return llvm_type_of(t.with_code(halide_type_uint));
    } else {
        return CodeGen_Posix::llvm_type_of(t);
    }
}

}  // namespace Internal
}  // namespace Halide
back to top