Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:47dd1021e4566c7fd7f1ad06ed4b14460fa23239

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
def SMMsplot(x,y,allStates):
  import os
  os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = 'C:/Users/maart/Anaconda3/Library/plugins/platforms'
  numPmsd = 4
  numPmss = 4
  minLen = 10
  p = np.linspace(0.5, 6, 12) # power
  
  # Calculations for whole dataset
  arDiffSw = []
  arSmssSw = []
  arDiffF = []
  arSmssF = []
  arDiffS = []
  arSmssS = []
  arDiffI = []
  arSmssI = []
  for i in range(len(x)):
    if len(x[i]) > max(numPmsd, numPmss, minLen):
      dif, _, smss, _ = getMSDandMSS([x[i]], [y[i]], numPmsd, numPmss, p)
      if (dif >= 0) and (smss >= 0):
        if list(allStates[i]).count(allStates[i][0]) !=  len(allStates[i]):
          arDiffSw.append(dif)
          arSmssSw.append(smss)
        elif allStates[i][0] == 0:
          arDiffF.append(dif)
          arSmssF.append(smss)
        elif allStates[i][0] == 1:
          arDiffS.append(dif)
          arSmssS.append(smss)
      else:
        arDiffI.append(dif)
        arSmssI.append(smss)
  
  
  arDiff = arDiffSw + arDiffF + arDiffS + arDiffI
  arSmss = arSmssSw + arSmssF + arSmssS + arSmssI
  
  # Calculations per state
  x0, y0, x1, y1, x2, y2 = getTrackPieces(x, y, allStates)
  
  arDiff0 = []
  arSmss0 = []
  for xx0, yy0 in zip(x0, y0):
    if len(xx0) > max(numPmsd, numPmss, minLen):
      dif0, _, smss0, _ = getMSDandMSS([xx0], [yy0], numPmsd, numPmss, p)
      if dif0 >= 0 and (smss0 >= 0):
        arDiff0.append(dif0)
        arSmss0.append(smss0)
  
  arDiff1 = []
  arSmss1 = []
  for xx1, yy1 in zip(x1, y1):
    if len(xx1) > max(numPmsd, numPmss, minLen):
      dif1, mss1, smss1, _ = getMSDandMSS([xx1], [yy1], numPmsd, numPmss, p)
      if dif1 >= 0 and (smss1 >= 0):
        arDiff1.append(dif1)
        arSmss1.append(smss1)
  
  arDiff2 = []
  arSmss2 = []
  for xx2, yy2 in zip(x2, y2):
    if len(xx2) > max(numPmsd, numPmss, minLen):
      dif2, mss2, smss2, _ = getMSDandMSS([xx2], [yy2], numPmsd, numPmss, p)
      if dif2 >= 0 and (smss2 >= 0):
        arDiff2.append(dif2)
        arSmss2.append(smss2)
  
  
  plt.style.use(['classic', 'seaborn-darkgrid'])
  plt.rcParams['figure.figsize'] = (12, 6)
  
  # Plot total (whole tracks)
  data = np.column_stack((arDiff, arSmss))
  df = pd.DataFrame(data, columns = [r'$D$ $\mathrm{[\mu m^2/s]}$', r'$S_{\mathrm{MSS}}$'])
  g = sns.JointGrid(r'$D$ $\mathrm{[\mu m^2/s]}$',r'$S_{\mathrm{MSS}}$', data = df)
  
  ax = g.ax_joint
  ax.set_xscale('log')
  g.plot_joint(plt.scatter, color = 'darkorange', alpha = 0.04, edgecolor = 'darkorange')
  ax.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  ax.set_ylim(0, 1)
  
  g.ax_marg_x.set_xscale('log')
  g.ax_marg_x.hist(df[r'$D$ $\mathrm{[\mu m^2/s]}$'], color = 'darkorange', edgecolor = 'none', alpha = 0.4, \
                   bins = np.logspace(np.log10(min(arDiff)), np.log10(max(arDiff)), 50))
  
  g.ax_marg_y.hist(df[r'$S_{\mathrm{MSS}}$'], color = 'darkorange', edgecolor = 'none', alpha = 0.4, \
                   orientation = 'horizontal', bins = np.linspace(min(arSmss), max(arSmss), 50))
  g.ax_marg_y.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  
  orange_patch = mpatches.Patch(color = 'darkorange', alpha = 0.4, label = 'Total')
  ax.legend(handles = [orange_patch], loc = 'upper left')
  plt.xlabel(r'$D$ $\mathrm{[\mu m^2/s]}$', fontdict = font, size = 'large')
  plt.ylabel(r'$S_{\mathrm{MSS}}$', fontdict = font, size = 'large')
  
  
  # Plot per trackstate (whole tracks only fast / only slow / only immobile / switching)
  dataSw = np.column_stack((arDiffSw, arSmssSw))
  dfSw = pd.DataFrame(dataSw, columns = [r'$D$ $\mathrm{[\mu m^2/s]}$', r'$S_{\mathrm{MSS}}$'])
  gSw = sns.JointGrid(r'$D$ $\mathrm{[\mu m^2/s]}$', r'$S_{\mathrm{MSS}}$', data = dfSw)
  
  axSw = gSw.ax_joint
  axSw.set_xscale('log')
  gSw.plot_joint(plt.scatter, color = 'green', alpha = 0.04, edgecolor = 'green')
  axSw.scatter(arDiffF, arSmssF, color = 'r', alpha = 0.04, edgecolor = 'r')
  axSw.scatter(arDiffS, arSmssS, color = 'royalblue', alpha = 0.04, edgecolor = 'royalblue')
  axSw.scatter(arDiffI, arSmssI, color = 'darkblue', alpha = 0.04, edgecolor = 'darkblue')
  axSw.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  axSw.set_ylim(0, 1)
  
  gSw.ax_marg_x.set_xscale('log')
  gSw.ax_marg_x.hist(dfSw[r'$D$ $\mathrm{[\mu m^2/s]}$'], color = 'green', edgecolor = 'none', alpha = 0.4, \
                     bins = np.logspace(np.log10(min(arDiffSw)), np.log10(max(arDiffSw)), 50))
  gSw.ax_marg_x.hist(arDiffF, color = 'red', edgecolor = 'none', alpha = 0.4, \
                     bins = np.logspace(np.log10(min(arDiffF)), np.log10(max(arDiffF)), 50))
  gSw.ax_marg_x.hist(arDiffS, color = 'royalblue', edgecolor = 'none', alpha = 0.4, \
                     bins = np.logspace(np.log10(min(arDiffS)), np.log10(max(arDiffS)), 50))
  gSw.ax_marg_x.hist(arDiffI, color = 'darkblue', edgecolor = 'none', alpha = 0.4, \
                     bins = np.logspace(np.log10(min(arDiffI)), np.log10(max(arDiffI)), 50))
  
  gSw.ax_marg_y.hist(dfSw[r'$S_{\mathrm{MSS}}$'], color = 'green', edgecolor = 'none', alpha = 0.4, \
                     orientation = 'horizontal', bins = np.linspace(min(arSmssSw), max(arSmssSw), 50))
  gSw.ax_marg_y.hist(arSmssF, color = 'red', edgecolor = 'none', alpha = 0.4, \
                     orientation = 'horizontal', bins = np.linspace(min(arSmssF), max(arSmssF), 50))
  gSw.ax_marg_y.hist(arSmssS, color = 'royalblue', edgecolor = 'none', alpha = 0.4, \
                     orientation = 'horizontal', bins = np.linspace(min(arSmssS), max(arSmssS), 50))
  gSw.ax_marg_y.hist(arSmssI, color = 'darkblue', edgecolor = 'none', alpha = 0.4, \
                     orientation = 'horizontal', bins = np.linspace(min(arSmssI), max(arSmssI), 50))
  gSw.ax_marg_y.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  
  red_patch = mpatches.Patch(color = 'red', alpha = 0.4, label = 'Only fast')
  royalblue_patch = mpatches.Patch(color = 'royalblue', alpha = 0.4, label = 'Only slow')
  darkblue_patch = mpatches.Patch(color = 'darkblue', alpha = 0.4, label = 'Only immobile')
  green_patch = mpatches.Patch(color = 'green', alpha = 0.4, label = 'Switching')
  axSw.legend(handles = [red_patch, royalblue_patch, darkblue_patch, green_patch], loc = 'upper left')
  plt.xlabel(r'D $\mathrm{(\mu m^2/sec)}$', fontdict = font, size = 'large')
  plt.ylabel(r'$S_{\mathrm{MSS}}$', fontdict = font, size = 'large')
  
  # Plot split (trackpieces fast / slow / immobile)
  data0 = np.column_stack((arDiff0, arSmss0))
  df0 = pd.DataFrame(data0, columns = [r'$D$ $\mathrm{[\mu m^2/s]}$', r'$S_{\mathrm{MSS}}$'])
  f = sns.JointGrid(r'$D$ $\mathrm{[\mu m^2/s]}$', r'$S_{\mathrm{MSS}}$', data = df0)
  
  ax0 = f.ax_joint
  ax0.set_xscale('log')
  f.plot_joint(plt.scatter, color = 'r', alpha = 0.1, edgecolor = 'r')
  ax0.scatter(arDiff1, arSmss1, color = 'royalblue', alpha = 0.1, edgecolor = 'royalblue')
  ax0.scatter(arDiff2, arSmss2, color = 'darkblue', alpha = 0.1, edgecolor = 'darkblue')
  ax0.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  ax0.set_ylim(0, 1)
  
  f.ax_marg_x.set_xscale('log')
  f.ax_marg_x.hist(df0[r'$D$ $\mathrm{[\mu m^2/s]}$'], color = 'red', edgecolor = 'none', alpha = 0.4, \
                   bins = np.logspace(np.log10(min(arDiff0)), np.log10(max(arDiff0)), 50))
  f.ax_marg_x.hist(arDiff1, color = 'royalblue', edgecolor = 'none', alpha = 0.4, \
                   bins = np.logspace(np.log10(min(arDiff1)), np.log10(max(arDiff1)), 50))
  f.ax_marg_x.hist(arDiff2, color = 'darkblue', edgecolor = 'none', alpha = 0.4, \
                   bins = np.logspace(np.log10(min(arDiff2)), np.log10(max(arDiff2)), 50))
  
  f.ax_marg_y.hist(df0[r'$S_{\mathrm{MSS}}$'], color = 'red', edgecolor = 'none', alpha = 0.4, \
                   orientation = 'horizontal', bins = np.linspace(min(arSmss0), max(arSmss0), 50))
  f.ax_marg_y.hist(arSmss1, color = 'royalblue', edgecolor = 'none', alpha = 0.4, orientation = 'horizontal', \
                   bins = np.linspace(min(arSmss1), max(arSmss1), 50))
  f.ax_marg_y.hist(arSmss2, color = 'darkblue', edgecolor = 'none', alpha = 0.4, orientation = 'horizontal', \
                   bins = np.linspace(min(arSmss2), max(arSmss2), 50))
  f.ax_marg_y.axhspan(0.4, 0.6, facecolor = 'slateblue', edgecolor = 'none', alpha = 0.1)
  
  red_patch = mpatches.Patch(color = 'red', alpha = 0.4, label = 'Fast tracklets')
  royalblue_patch = mpatches.Patch(color = 'royalblue', alpha = 0.4, label = 'Slow tracklets')
  darkblue_patch = mpatches.Patch(color = 'darkblue', alpha = 0.4, label = 'Immobile tracklets')
  ax0.legend(handles = [red_patch, royalblue_patch, darkblue_patch], loc = 'upper left')
  plt.xlabel(r'$D$ $\mathrm{[\mu m^2/s]}$', fontdict = font, size = 'large')
  plt.ylabel(r'$S_{\mathrm{MSS}}$', fontdict = font, size = 'large')
  return plt
  #plt.show()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API