\name{rFFrankJoe} \alias{rFFrank} \alias{rFJoe} \title{Sampling Distribution F for Frank and Joe} \description{ Generate a vector of variates \eqn{V \sim F}{V ~ F} from the distribution function \eqn{F} with Laplace-Stieltjes transform \deqn{(1-(1-\exp(-t)(1-e^{-\theta_1}))^\alpha)/(1-e^{-\theta_0}), }{(1-(1-exp(-t)*(1-e^(-theta1)))^alpha)/(1-e^(-theta0)),} for Frank, or \deqn{1-(1-\exp(-t))^\alpha,}{1-(1-exp(-t))^alpha} for Joe, respectively, where \eqn{\theta_0}{theta0} and \eqn{\theta_1}{theta1} denote two parameters of Frank (that is, \eqn{\theta_0,\theta_1\in(0,\infty)}{theta0,theta1 in (0,Inf)}) and Joe (that is, \eqn{\theta_0,\theta_1\in[1,\infty)}{theta0,theta1 in [1,Inf)}) satisfying \eqn{\theta_0\le\theta_1}{theta0 <= theta1} and \eqn{\alpha=\theta_0/\theta_1}{alpha=theta0/theta1}. } \usage{ rFFrank(n, theta0, theta1, rej) rFJoe(n, alpha) } \arguments{ \item{n}{number of variates from \eqn{F}.} \item{theta0}{parameter \eqn{\theta_0}{theta0}.} \item{theta1}{parameter \eqn{\theta_1}{theta1}.} \item{rej}{method switch for \code{rFFrank}: if \code{theta0} > \code{rej} a rejection from Joe's family (Sibuya distribution) is applied (otherwise, a logarithmic envelope is used).} \item{alpha}{parameter \eqn{\alpha= \theta_0/\theta_1}{alpha = theta0/theta1} in \eqn{(0,1]} for \code{rFJoe}.} } \value{ numeric vector of random variates \eqn{V} of length \code{n}. } \details{ \code{rFFrank(n, theta0, theta1, rej)} calls \code{\link{rF01Frank}(rep(1,n), theta0, theta1, rej, 1)} and \code{rFJoe(n, alpha)} calls \code{\link{rSibuya}(n, alpha)}. } \author{Marius Hofert} \seealso{ \code{\link{rF01Frank}}, \code{\link{rF01Joe}}, also for references. \code{\link{rSibuya}}, and \code{\link{rnacopula}}. } \examples{ ## Simple definition of the functions: rFFrank rFJoe } \keyword{distribution}