https://github.com/cran/bayestestR
Tip revision: d8462ad2168ad7ee61c0d7e679174e775f01a9be authored by Dominique Makowski on 18 January 2020, 07:10:02 UTC
version 0.5.0
version 0.5.0
Tip revision: d8462ad
test-p_direction.R
context("p_direction")
test_that("p_direction", {
set.seed(333)
x <- bayestestR::distribution_normal(10000, 1, 1)
pd <- bayestestR::p_direction(x)
testthat::expect_equal(as.numeric(pd), 0.842, tolerance = 0.1)
testthat::expect_equal(as.numeric(p_direction(x, method = "kernel")), 0.842, tolerance = 0.1)
testthat::expect_equal(nrow(p_direction(data.frame(replicate(4, rnorm(100))))), 4)
testthat::expect_is(pd, "p_direction")
testthat::expect_equal(tail(capture.output(print(pd)), 1), "pd = 84.14%")
})
if (require("insight")) {
m <- insight::download_model("stanreg_merMod_5")
p <- insight::get_parameters(m, effects = "all")
testthat::test_that("p_direction", {
testthat::expect_equal(
p_direction(m, effects = "all")$pd,
p_direction(p)$pd,
tolerance = 1e-3
)
})
m <- insight::download_model("brms_zi_3")
p <- insight::get_parameters(m, effects = "all", component = "all")
testthat::test_that("p_direction", {
testthat::expect_equal(
p_direction(m, effects = "all", component = "all")$pd,
p_direction(p)$pd,
tolerance = 1e-3
)
})
}