Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:48d55ccee6a33ded53b70394caa838748f452230
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Active Subspaces\n",
    "\n",
    "Sometimes, the behavior of an $N$-dimensional model $f$ can be explained best by a *linear reparameterization* of its inputs variables, i.e. we can write $f(\\mathbf{x}) = g(\\mathbf{y}) = g(\\mathbf{M} \\cdot \\mathbf{x})$ where $\\mathbf{M}$ has size $M \\times N$ and $M < N$. When this happens, we say that $f$ admits an $M$-dimensional *active subspace* with basis given by $\\mathbf{M}$'s rows. Those basis vectors are the main directions of variance of the function $f$.\n",
    "\n",
    "The main directions are the eigenvectors of the matrix\n",
    "\n",
    "$\\mathbb{E}[\\nabla f^T \\cdot \\nabla f] = \\begin{pmatrix}\n",
    "\\mathbb{E}[f_{x_1} \\cdot f_{x_1}] & \\dots & \\mathbb{E}[f_{x_1} \\cdot f_{x_N}] \\\\\n",
    "\\dots & \\dots & \\dots \\\\\n",
    "\\mathbb{E}[f_{x_N} \\cdot f_{x_1}] & \\dots & \\mathbb{E}[f_{x_N} \\cdot f_{x_N}]\n",
    "\\end{pmatrix}$\n",
    "\n",
    "whereas the eigenvalues reveal the subspace's dimensionality --that is, a large gap between the $M$-th and $(M+1)$-th eigenvalue indicates that an $M$-dimensional active subspace is present.\n",
    "\n",
    "The necessary expected values are easy to compute from a tensor decomposition: they are just dot products between tensors. We will show a small demonstration of that in this notebook using a 4D function.\n",
    "\n",
    "Reference: see e.g. [\"Discovering an Active Subspace in a Single-Diode Solar Cell Model\", P. Constantine et al. (2015)](https://arxiv.org/abs/1406.7607)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tntorch as tn\n",
    "import torch\n",
    "torch.set_default_dtype(torch.float64)\n",
    "\n",
    "def f(X):\n",
    "    return X[:, 0] * X[:, 1] + X[:, 2]\n",
    "\n",
    "ticks = 64\n",
    "P = 100\n",
    "N = 4\n",
    "\n",
    "X = torch.rand((P, N))\n",
    "X *= (ticks-1)\n",
    "X = torch.round(X)\n",
    "y = f(X)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will fit this function `f` using a low-degree expansion in terms of [Legendre polynomials](pce.ipynb)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 0       | loss:   0.999753 | total time:    0.0681\n",
      "iter: 500     | loss:   0.976744 | total time:    0.5568\n",
      "iter: 1000    | loss:   0.748542 | total time:    1.0160\n",
      "iter: 1500    | loss:   0.136286 | total time:    1.4746\n",
      "iter: 2000    | loss:   0.008914 | total time:    1.9377\n",
      "iter: 2500    | loss:   0.008340 | total time:    2.3975\n",
      "iter: 3000    | loss:   0.007649 | total time:    2.8598\n",
      "iter: 3500    | loss:   0.006894 | total time:    3.3183\n",
      "iter: 4000    | loss:   0.006212 | total time:    3.7835\n",
      "iter: 4203    | loss:   0.006041 | total time:    3.9697 <- converged (tol=0.0001)\n"
     ]
    }
   ],
   "source": [
    "t = tn.rand([ticks]*N, ranks_tt=2, ranks_tucker=2, requires_grad=True)\n",
    "t.set_factors('legendre')\n",
    "\n",
    "def loss(t):\n",
    "    return torch.norm(t[X].torch()-y) / torch.norm(y)\n",
    "tn.optimize(t, loss)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAX+klEQVR4nO3debgldX3n8feHRRA3QFpEtnbBENwQWsBlEhyVzQWMGwQjKMo4wkQnyZOg4+M6juiMJsG4YUTgUUGjEhBRaQmCZmRpFFklNAQEbDZBFkUG8Dt/VF043tzld7v73HO67/v1POc5Vb/6narvLTj9OfWrOnVSVUiSNJt1Rl2AJGnNYGBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBha0JIcmOT0UdcxkyTfT/LmUdchrTfqAqT5kOQaYHPggYHmY6vqcOBLIylKWsMYGFpIXl5V3xt1EdKayiEpLWhJDk7yw4H5PZJckeSOJJ9KctbgcFCSNyW5PMntSb6bZNuBZZXkrUmuTPKrJJ9MZ4N+/ukDfRcluSfJ45JskuTUJLf06z01yVbT1Pu+JF8cmF/cb3e9fv4xST6fZEWSG5L8zyTr9sue0v89dyS5NclXVu/e1NrOwJB6STYDvga8E3gscAXwvIHl+wLvAv4EWAT8ADhh0mpeBjwHeCbwWmDPqroX+AZwwEC/1wJnVdXNdO/DLwDbAtsA9wD/sJJ/xrHA/cBTgGcDewATgfdB4HRgE2Ar4BMruQ0tUAaGFpJ/7j/pTzzeMmn5PsClVfWNqrofOAq4cWD5W4EPV9Xl/fL/Bew4eJQBHFlVv6qqnwNnAjv27V8G9h/o96d9G1X1y6r6elX9pqruAj4E/PFc/7gkm/d/wzuq6td9GP3twHbvowulJ1TVb6vqh9OsSpqSgaGFZL+q2njg8blJy58AXDcxU92dOa8fWL4t8PcTgQPcBgTYcqDPYMD8BnhkP30msFGSXZMspguSkwCSbJTks0muTXIncDaw8cRQ0hxsC6wPrBio8bPA4/rlf93Xe16SS5O8aY7r1wLnSW/pISvohmoASJLBebow+VBVzfmqqqp6IMlX6YalbgJO7Y8mAP4S+ANg16q6McmOwE/o/nGf7NfARgPzj59U373AZv0R0OQabgTe0v9tLwC+l+Tsqlo+179HC5NHGNJDvgU8I8l+/Unkw/j9f5A/A7wzydPgwRPMr5nD+r8MvA44sJ+e8Ci68xa/SrIp8N4Z1nEh8EdJtknyGLrzLQBU1Qq6cxQfS/LoJOskeXKSP+7rfc3AyfTbgQJ+N4f6tcAZGFpIvpnk7oHHSYMLq+pW4DXAR4FfAjsAy+g+tVNVJwEfAU7sh44uAfZu3XhVnUt3hPAE4NsDi/4OeDhwK3AO8J0Z1rEU+ApwEXABcOqkLm8AHgZcRhcKXwO26Jc9Bzg3yd3AKcDbq+rq1vql+ANK0tSSrEN3DuPAqjpz1PVIo+YRhjQgyZ5JNk6yAd0ltKH71C8teAaG9PueC1xFNzz0crorq+4ZbUnSeHBISpLUxCMMSVKTtfJ7GJtttlktXrx41GVI0hrlggsuuLWqFk23fK0MjMWLF7Ns2bJRlyFJa5Qk18603CEpSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUpO18pveq2rxEd8adQkjdc2RLx11CZLGkEcYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmQwuMJFsnOTPJZUkuTfL2vn3TJEuTXNk/b9K3J8lRSZYnuSjJTgPrOqjvf2WSg4ZVsyRpesM8wrgf+Muq2gHYDTgsyQ7AEcAZVbUdcEY/D7A3sF3/OBT4NHQBA7wX2BXYBXjvRMhIkubP0AKjqlZU1Y/76buAy4EtgX2B4/puxwH79dP7AsdX5xxg4yRbAHsCS6vqtqq6HVgK7DWsuiVJU5uXcxhJFgPPBs4FNq+qFf2iG4HN++ktgesGXnZ93zZd++RtHJpkWZJlt9xyy+r9AyRJww+MJI8Evg68o6ruHFxWVQXU6thOVR1dVUuqasmiRYtWxyolSQOGGhhJ1qcLiy9V1Tf65pv6oSb655v79huArQdevlXfNl27JGkeDfMqqQCfBy6vqo8PLDoFmLjS6SDg5IH2N/RXS+0G3NEPXX0X2CPJJv3J7j36NknSPFpviOt+PvBnwMVJLuzb3gUcCXw1ySHAtcBr+2WnAfsAy4HfAG8EqKrbknwQOL/v94Gqum2IdUuSpjC0wKiqHwKZZvGLpuhfwGHTrOsY4JjVV50kaa78prckqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmQwuMJMckuTnJJQNt70tyQ5IL+8c+A8vemWR5kiuS7DnQvlfftjzJEcOqV5I0s2EeYRwL7DVF+99W1Y794zSAJDsA+wNP61/zqSTrJlkX+CSwN7ADcEDfV5I0z9Yb1oqr6uwkixu77wucWFX3Av+eZDmwS79seVVdDZDkxL7vZau7XknSzJqOMNJ5fZL39PPbJNllttdN4/AkF/VDVpv0bVsC1w30ub5vm659qhoPTbIsybJbbrllJUuTJE2ndUjqU8BzgQP6+bvohorm6tPAk4EdgRXAx1ZiHVOqqqOraklVLVm0aNHqWq0kqdc6JLVrVe2U5CcAVXV7kofNdWNVddPEdJLPAaf2szcAWw903apvY4Z2SdI8aj3CuK8/AV0ASRYBv5vrxpJsMTD7SmDiCqpTgP2TbJDkicB2wHnA+cB2SZ7YB9T+fV9J0jxrPcI4CjgJeFySDwGvBt490wuSnADsDmyW5HrgvcDuSXakC55rgP8CUFWXJvkq3cns+4HDquqBfj2HA98F1gWOqapL5/D3SZJWk6bAqKovJbkAeBEQYL+qunyW1xwwRfPnZ+j/IeBDU7SfBpzWUqckaXhmDIwkmw7M3gycMLisqm4bVmGSpPEy2xHGBXTDRwG2AW7vpzcGfg48cZjFSZLGx4wnvavqiVX1JOB7wMurarOqeizwMuD0+ShQkjQeWq+S2m3iNh4AVfVt4HnDKUmSNI5ar5L6RZJ3A1/s5w8EfjGckiRJ46j1COMAYBHdpbUnAY/joW99S5IWgNbLam8D3j7kWiRJY6wpMJKcSf8t70FV9Z9Xe0WSpLHUeg7jrwamNwReRfeNbEnSAtE6JHXBpKZ/TXLeEOqRJI2p1iGpwW98rwPsDDxmKBVJksZS65DU4De+7wf+HThkWEVJksZPa2D8YVX9drAhyQZDqEeSNKZav4fxf6do+9HqLESSNN5mu1vt4+l+Q/vhSZ5NNyQF8GhgoyHXJkkaI7MNSe0JHEz306gfH2i/C3jXkGqSJI2hGQOjqo4Djkvyqqr6+jzVJEkaQ7MNSb2+qr4ILE7yF5OXV9XHp3iZJGktNNuQ1CP650cOuxBJ0nibbUjqs/3z++enHEnSuGr9pvci4C3A4sHXVNWbhlOWJGnctH5x72TgB3Q/1frA8MqRJI2r1sDYqKr+ZqiVSJLGWus3vU9Nss9QK5EkjbXWwHg7XWjck+TOJHcluXOYhUmSxkvr72E8atiFSJLGW+tVUjtN0XwHcG1V+ct7krQAtJ70/hSwE3BxP/8M4BLgMUn+a1WdPoziJEnjo/Ucxi+AZ1fVzlW1M7AjcDXwEuCjQ6pNkjRGWgPjqVV16cRMVV0GbF9VVw+nLEnSuGkdkro0yaeBE/v51wGX9b+6d99QKpMkjZXWI4yDgeXAO/rH1X3bfcALV39ZkqRx03pZ7T3Ax/rHZHev1ookSWOp9bLa7YAPAzsAG060V9WThlSXJGnMtA5JfQH4NHA/3RDU8cAXh1WUJGn8tAbGw6vqDCBVdW1VvQ946UwvSHJMkpuTXDLQtmmSpUmu7J836duT5Kgky5NcNPhFwSQH9f2vTHLQ3P9ESdLq0BoY9yZZB7gyyeFJXsnsv8J3LLDXpLYjgDOqajvgjH4eYG9gu/5xKN3RDEk2Bd4L7ArsArx3ImQkSfNrLjcf3Aj4c2Bn4M+AGT/tV9XZwG2TmvcFjuunjwP2G2g/vjrnABsn2QLYE1haVbdV1e3AUv5jCEmS5kHrVVLn95N3A29che1tXlUr+ukbgc376S2B6wb6Xd+3Tdf+HyQ5lO7ohG222WYVSpQkTWXGwEhyykzLq+oVK7vhqqoktbKvn2J9RwNHAyxZsmS1rVeS1JntCOO5dJ/wTwDOBbKK27spyRZVtaIfcrq5b78B2Hqg31Z92w3A7pPav7+KNUiSVsJs5zAeD7wLeDrw93Q3G7y1qs6qqrNWYnun8NC5j4Pofit8ov0N/dVSuwF39ENX3wX2SLJJf7J7j75NkjTPZgyMqnqgqr5TVQcBu9HdHuT7SQ6fbcVJTgB+BPxBkuuTHAIcCbwkyZXAi/t5gNPobjeyHPgc8LZ++7cBHwTO7x8f6NskSfNs1pPe/Q0GXwocACwGjgJOmu11VXXANIteNEXfAg6bZj3HAMfMtj1J0nDNdtL7eLrhqNOA91fVJTP1lyStvWY7wng98Gu672H8efLgOe/QHRg8eoi1SZLGyIyBUVWtX+yTJK3lDARJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU1GEhhJrklycZILkyzr2zZNsjTJlf3zJn17khyVZHmSi5LsNIqaJWmhG+URxguraseqWtLPHwGcUVXbAWf08wB7A9v1j0OBT897pZKksRqS2hc4rp8+DthvoP346pwDbJxkixHUJ0kL2qgCo4DTk1yQ5NC+bfOqWtFP3whs3k9vCVw38Nrr+7bfk+TQJMuSLLvllluGVbckLVjrjWi7L6iqG5I8Dlia5GeDC6uqktRcVlhVRwNHAyxZsmROr5UkzW4kRxhVdUP/fDNwErALcNPEUFP/fHPf/QZg64GXb9W3SZLm0bwHRpJHJHnUxDSwB3AJcApwUN/tIODkfvoU4A391VK7AXcMDF1JkubJKIakNgdOSjKx/S9X1XeSnA98NckhwLXAa/v+pwH7AMuB3wBvnP+SJUnzHhhVdTXwrCnafwm8aIr2Ag6bh9IkSTMYp8tqJUljzMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktRkVHer1Vps8RHfGnUJI3XNkS8ddQnSUHiEIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpqsMYGRZK8kVyRZnuSIUdcjSQvNGhEYSdYFPgnsDewAHJBkh9FWJUkLyxoRGMAuwPKqurqq/h9wIrDviGuSpAVlvVEX0GhL4LqB+euBXQc7JDkUOLSfvTvJFTOsbzPg1tVa4eo10vrykVm7uP9m4P4bOutbNTPVt+1ML1xTAmNWVXU0cHRL3yTLqmrJkEtaada3aqxv1Vjfqlmb61tThqRuALYemN+qb5MkzZM1JTDOB7ZL8sQkDwP2B04ZcU2StKCsEUNSVXV/ksOB7wLrAsdU1aWrsMqmoasRsr5VY32rxvpWzVpbX6pqdRYiSVpLrSlDUpKkETMwJElNFkRgJNk0ydIkV/bPm0zT74EkF/aPoZ5Un+1WJ0k2SPKVfvm5SRYPs56VqO/gJLcM7K83z3N9xyS5Ockl0yxPkqP6+i9KstOY1bd7kjsG9t975rm+rZOcmeSyJJcmefsUfUa2DxvrG9k+TLJhkvOS/LSv7/1T9BnZe7ixvrm/h6tqrX8AHwWO6KePAD4yTb+756medYGrgCcBDwN+Cuwwqc/bgM/00/sDX5nH/dVS38HAP4zwv+kfATsBl0yzfB/g20CA3YBzx6y+3YFTR7j/tgB26qcfBfzbFP+NR7YPG+sb2T7s98kj++n1gXOB3Sb1GeV7uKW+Ob+HF8QRBt1tRI7rp48D9htdKUDbrU4Ga/4a8KIkGaP6RqqqzgZum6HLvsDx1TkH2DjJFvNTXVN9I1VVK6rqx/30XcDldHdUGDSyfdhY38j0++Tufnb9/jH5CqKRvYcb65uzhRIYm1fVin76RmDzafptmGRZknOS7DfEeqa61cnkN8ODfarqfuAO4LFDrGnKbfemqg/gVf1QxdeSbD3F8lFq/RtG6bn9kMG3kzxtVEX0QyXPpvsUOmgs9uEM9cEI92GSdZNcCNwMLK2qafffCN7DLfXBHN/Da01gJPlekkumePzeJ+PqjsWmS9ptq/vK/J8Cf5fkycOuew32TWBxVT0TWMpDn6TU5sd0/789C/gE8M+jKCLJI4GvA++oqjtHUcNMZqlvpPuwqh6oqh3p7jyxS5Knz+f2Z9NQ35zfw2tNYFTVi6vq6VM8TgZumjiU7p9vnmYdN/TPVwPfp/tUMwwttzp5sE+S9YDHAL8cUj2TzVpfVf2yqu7tZ/8R2Hmeams11reTqao7J4YMquo0YP0km81nDUnWp/vH+EtV9Y0puox0H85W3zjsw37bvwLOBPaatGiU7+EHTVffyryH15rAmMUpwEH99EHAyZM7JNkkyQb99GbA84HLhlRPy61OBmt+NfAv/dHRfJi1vklj2a+gG2MeJ6cAb+iv9NkNuGNgWHLkkjx+Yjw7yS5078V5+8ek3/bngcur6uPTdBvZPmypb5T7MMmiJBv30w8HXgL8bFK3kb2HW+pbqffwfJ21H+WDbtzwDOBK4HvApn37EuAf++nnARfTXRF0MXDIkGvah+7Kj6uA/9G3fQB4RT+9IfBPwHLgPOBJ87zPZqvvw8Cl/f46E9h+nus7AVgB3Ec3tn4I8Fbgrf3y0P3o1lX9f88lY1bf4QP77xzgefNc3wvohmYvAi7sH/uMyz5srG9k+xB4JvCTvr5LgPf07WPxHm6sb87vYW8NIklqslCGpCRJq8jAkCQ1MTAkSU0MDElSEwNDktTEwJB48Jr+E5NcleSCJKcleeqo61pZ/Z1cnzfqOrR2MTC04PVf/joJ+H5VPbmqdgbeyfT3HFsT7E733SJptTEwJHghcF9VfWaioap+Cvwwyf/u70l2cZLXwYOf3s9KcnKSq5McmeTA/vcHLp64B1mSY5N8pr+h5b8leVnfvmGSL/R9f5LkhX37wUm+keQ76X675aMT9STZI8mPkvw4yT/191giyTVJ3t+3X5xk+/5mfW8F/nu63zn4T/O0H7WWW2/UBUhj4OnABVO0/wmwI/AsYDPg/CRn98ueBfwh3S3Mr6a7Y8Au6X7o578B7+j7Laa7XfyTgTOTPAU4jO4+mM9Isj1w+sDw14509zC7F7giySeAe4B3Ay+uql8n+RvgL+i+tQtwa1XtlORtwF9V1ZuTfIbu913+z6rtGukhBoY0vRcAJ1TVA3Q3sDwLeA5wJ3B+9fdVSnIVcHr/movpjlgmfLWqfgdcmeRqYPt+vZ8AqKqfJbkWmAiMM6rqjn69lwHbAhsDOwD/2t866WHAjwa2MXFjvgvoQk4aCgND6u6n8+o5vubegenfDcz/jt9/X02+985s9+IZXO8D/bpC93sGB8zymon+0lB4DkOCfwE2SHLoREOSZwK/Al6X7odoFtH97Op5c1z3a5Ks05/XeBJwBfAD4MB+O08Ftunbp3MO8Px+OIskj2i4gusuup82lVYbA0MLXnV34Hwl8OL+stpL6e7k+WW6u33+lC5U/rqqbpzj6n9OFzLfprvL6m+BTwHrJLkY+ApwcD30uwRT1XcL3e8vn5DkIrrhqO1n2e43gVd60lurk3erlYYkybHAqVX1tVHXIq0OHmFIkpp4hCFJauIRhiSpiYEhSWpiYEiSmhgYkqQmBoYkqcn/BwpJcmOkGIF0AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "eigvals, eigvecs = tn.active_subspace(t, bounds=None)\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "plt.figure()\n",
    "plt.bar(range(N), eigvals.detach().numpy())\n",
    "plt.title('Eigenvalues')\n",
    "plt.xlabel('Component')\n",
    "plt.ylabel('Magnitude')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In view of those eigenvalues, we can conclude that the learned model can be written (almost) perfectly in terms of 2 linearly reparameterized variables."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API