Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/automl
28 March 2020, 16:12:19 UTC
  • Code
  • Branches (11)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0.5
    • refs/tags/1.0.6
    • refs/tags/1.0.8
    • refs/tags/1.2.0
    • refs/tags/1.2.6
    • refs/tags/1.2.7
    • refs/tags/1.2.8
    • refs/tags/1.3.0
    • refs/tags/1.3.1
    • refs/tags/1.3.2
    No releases to show
  • 0789685
  • /
  • man
  • /
  • automl_train.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:4939612b4535ba18c7d4bb637489e63af2b7c729
origin badgedirectory badge Iframe embedding
swh:1:dir:3fad74cf4e14c704f417db3a9b6d531c086afa22
origin badgerevision badge
swh:1:rev:dafc26a4ce301e9e934e5f3b8e5ac7e70fe971a3
origin badgesnapshot badge
swh:1:snp:03e1d6b518b5a83c5975b8961bca8cca1eea4b77
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: dafc26a4ce301e9e934e5f3b8e5ac7e70fe971a3 authored by Alex Boulangé on 16 March 2019, 14:03:30 UTC
version 1.2.8
Tip revision: dafc26a
automl_train.Rd
\name{automl_train}
\alias{automl_train}
\title{automl_train}
\description{
The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)\cr
This function launches the \link{automl_train_manual} function for each particle at each converging step
}
\usage{
automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL)
}
\arguments{
\item{Xref}{ inputs matrix or data.frame (containing numerical values only)
}

\item{Yref}{ target matrix or data.frame (containing numerical values only)
}

\item{autopar}{ list of parameters for hyperparameters optimization, see \link{autopar} section\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)
}

\item{hpar}{ list of parameters and hyperparameters for Deep Neural Network, see \link{hpar} section\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)
}

\item{mdlref}{ model trained with \link{automl_train} to start training with saved \link{hpar} and \link{autopar}
(not the model)\cr
nb: manually entered parameters above override loaded ones}
}

\examples{
\dontrun{
##REGRESSION (predict Sepal.Length given other Iris parameters)
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train(Xref = xmat, Yref = ymat)
}
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
#with gradient descent and random hyperparameters sets
amlmodel <- automl_train(Xref = xmat, Yref = ymat,
                          autopar = list(numiterations = 1, psopartpopsize = 1, seed = 11),
                          hpar = list(numiterations = 10))
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top