\name{automl_train} \alias{automl_train} \title{automl_train} \description{ The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)\cr This function launches the \link{automl_train_manual} function for each particle at each converging step } \usage{ automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL) } \arguments{ \item{Xref}{ inputs matrix or data.frame (containing numerical values only) } \item{Yref}{ target matrix or data.frame (containing numerical values only) } \item{autopar}{ list of parameters for hyperparameters optimization, see \link{autopar} section\cr Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time) } \item{hpar}{ list of parameters and hyperparameters for Deep Neural Network, see \link{hpar} section\cr Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time) } \item{mdlref}{ model trained with \link{automl_train} to start training with saved \link{hpar} and \link{autopar} (not the model)\cr nb: manually entered parameters above override loaded ones} } \examples{ \dontrun{ ##REGRESSION (predict Sepal.Length given other Iris parameters) data(iris) xmat <- cbind(iris[,2:4], as.numeric(iris$Species)) ymat <- iris[,1] amlmodel <- automl_train(Xref = xmat, Yref = ymat) } ##CLASSIFICATION (predict Species given other Iris parameters) data(iris) xmat = iris[,1:4] lab2pred <- levels(iris$Species) lghlab <- length(lab2pred) iris$Species <- as.numeric(iris$Species) ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE) ymat <- (ymat == as.numeric(iris$Species)) + 0 #with gradient descent and random hyperparameters sets amlmodel <- automl_train(Xref = xmat, Yref = ymat, autopar = list(numiterations = 1, psopartpopsize = 1, seed = 11), hpar = list(numiterations = 10)) }