Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:4988361a6088d755d331f1c512da553dd4b43526

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
// Generated by using Rcpp::compileAttributes() -> do not edit by hand
// Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#include <RcppArmadillo.h>
#include <Rcpp.h>

using namespace Rcpp;

#ifdef RCPP_USE_GLOBAL_ROSTREAM
Rcpp::Rostream<true>&  Rcpp::Rcout = Rcpp::Rcpp_cout_get();
Rcpp::Rostream<false>& Rcpp::Rcerr = Rcpp::Rcpp_cerr_get();
#endif

// gwdr_fit
List gwdr_fit(const NumericMatrix& x, const NumericVector& y, const NumericMatrix& coords, const NumericVector& bw, const LogicalVector& adaptive, const IntegerVector& kernel, bool intercept, bool hatmatrix, size_t parallel_type, const IntegerVector& parallel_arg, bool optim_bw, size_t optim_bw_criterion, double optim_threashold, double optim_step, size_t optim_max_iter, bool select_model, size_t select_model_threshold);
RcppExport SEXP _GWmodel3_gwdr_fit(SEXP xSEXP, SEXP ySEXP, SEXP coordsSEXP, SEXP bwSEXP, SEXP adaptiveSEXP, SEXP kernelSEXP, SEXP interceptSEXP, SEXP hatmatrixSEXP, SEXP parallel_typeSEXP, SEXP parallel_argSEXP, SEXP optim_bwSEXP, SEXP optim_bw_criterionSEXP, SEXP optim_threasholdSEXP, SEXP optim_stepSEXP, SEXP optim_max_iterSEXP, SEXP select_modelSEXP, SEXP select_model_thresholdSEXP) {
BEGIN_RCPP
    Rcpp::RObject rcpp_result_gen;
    Rcpp::RNGScope rcpp_rngScope_gen;
    Rcpp::traits::input_parameter< const NumericMatrix& >::type x(xSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type y(ySEXP);
    Rcpp::traits::input_parameter< const NumericMatrix& >::type coords(coordsSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type bw(bwSEXP);
    Rcpp::traits::input_parameter< const LogicalVector& >::type adaptive(adaptiveSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type kernel(kernelSEXP);
    Rcpp::traits::input_parameter< bool >::type intercept(interceptSEXP);
    Rcpp::traits::input_parameter< bool >::type hatmatrix(hatmatrixSEXP);
    Rcpp::traits::input_parameter< size_t >::type parallel_type(parallel_typeSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type parallel_arg(parallel_argSEXP);
    Rcpp::traits::input_parameter< bool >::type optim_bw(optim_bwSEXP);
    Rcpp::traits::input_parameter< size_t >::type optim_bw_criterion(optim_bw_criterionSEXP);
    Rcpp::traits::input_parameter< double >::type optim_threashold(optim_threasholdSEXP);
    Rcpp::traits::input_parameter< double >::type optim_step(optim_stepSEXP);
    Rcpp::traits::input_parameter< size_t >::type optim_max_iter(optim_max_iterSEXP);
    Rcpp::traits::input_parameter< bool >::type select_model(select_modelSEXP);
    Rcpp::traits::input_parameter< size_t >::type select_model_threshold(select_model_thresholdSEXP);
    rcpp_result_gen = Rcpp::wrap(gwdr_fit(x, y, coords, bw, adaptive, kernel, intercept, hatmatrix, parallel_type, parallel_arg, optim_bw, optim_bw_criterion, optim_threashold, optim_step, optim_max_iter, select_model, select_model_threshold));
    return rcpp_result_gen;
END_RCPP
}
// gwr_basic_fit
List gwr_basic_fit(const NumericMatrix& x, const NumericVector& y, const NumericMatrix& coords, double bw, bool adaptive, size_t kernel, bool longlat, double p, double theta, bool hatmatrix, bool intercept, size_t parallel_type, const IntegerVector& parallel_arg, bool optim_bw, size_t optim_bw_criterion, bool select_model, size_t select_model_criterion, size_t select_model_threshold);
RcppExport SEXP _GWmodel3_gwr_basic_fit(SEXP xSEXP, SEXP ySEXP, SEXP coordsSEXP, SEXP bwSEXP, SEXP adaptiveSEXP, SEXP kernelSEXP, SEXP longlatSEXP, SEXP pSEXP, SEXP thetaSEXP, SEXP hatmatrixSEXP, SEXP interceptSEXP, SEXP parallel_typeSEXP, SEXP parallel_argSEXP, SEXP optim_bwSEXP, SEXP optim_bw_criterionSEXP, SEXP select_modelSEXP, SEXP select_model_criterionSEXP, SEXP select_model_thresholdSEXP) {
BEGIN_RCPP
    Rcpp::RObject rcpp_result_gen;
    Rcpp::RNGScope rcpp_rngScope_gen;
    Rcpp::traits::input_parameter< const NumericMatrix& >::type x(xSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type y(ySEXP);
    Rcpp::traits::input_parameter< const NumericMatrix& >::type coords(coordsSEXP);
    Rcpp::traits::input_parameter< double >::type bw(bwSEXP);
    Rcpp::traits::input_parameter< bool >::type adaptive(adaptiveSEXP);
    Rcpp::traits::input_parameter< size_t >::type kernel(kernelSEXP);
    Rcpp::traits::input_parameter< bool >::type longlat(longlatSEXP);
    Rcpp::traits::input_parameter< double >::type p(pSEXP);
    Rcpp::traits::input_parameter< double >::type theta(thetaSEXP);
    Rcpp::traits::input_parameter< bool >::type hatmatrix(hatmatrixSEXP);
    Rcpp::traits::input_parameter< bool >::type intercept(interceptSEXP);
    Rcpp::traits::input_parameter< size_t >::type parallel_type(parallel_typeSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type parallel_arg(parallel_argSEXP);
    Rcpp::traits::input_parameter< bool >::type optim_bw(optim_bwSEXP);
    Rcpp::traits::input_parameter< size_t >::type optim_bw_criterion(optim_bw_criterionSEXP);
    Rcpp::traits::input_parameter< bool >::type select_model(select_modelSEXP);
    Rcpp::traits::input_parameter< size_t >::type select_model_criterion(select_model_criterionSEXP);
    Rcpp::traits::input_parameter< size_t >::type select_model_threshold(select_model_thresholdSEXP);
    rcpp_result_gen = Rcpp::wrap(gwr_basic_fit(x, y, coords, bw, adaptive, kernel, longlat, p, theta, hatmatrix, intercept, parallel_type, parallel_arg, optim_bw, optim_bw_criterion, select_model, select_model_criterion, select_model_threshold));
    return rcpp_result_gen;
END_RCPP
}
// gwr_basic_predict
NumericMatrix gwr_basic_predict(const NumericMatrix& pcoords, const NumericMatrix& x, const NumericVector& y, const NumericMatrix& coords, double bw, bool adaptive, size_t kernel, bool longlat, double p, double theta, bool intercept, size_t parallel_type, const IntegerVector& parallel_arg);
RcppExport SEXP _GWmodel3_gwr_basic_predict(SEXP pcoordsSEXP, SEXP xSEXP, SEXP ySEXP, SEXP coordsSEXP, SEXP bwSEXP, SEXP adaptiveSEXP, SEXP kernelSEXP, SEXP longlatSEXP, SEXP pSEXP, SEXP thetaSEXP, SEXP interceptSEXP, SEXP parallel_typeSEXP, SEXP parallel_argSEXP) {
BEGIN_RCPP
    Rcpp::RObject rcpp_result_gen;
    Rcpp::RNGScope rcpp_rngScope_gen;
    Rcpp::traits::input_parameter< const NumericMatrix& >::type pcoords(pcoordsSEXP);
    Rcpp::traits::input_parameter< const NumericMatrix& >::type x(xSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type y(ySEXP);
    Rcpp::traits::input_parameter< const NumericMatrix& >::type coords(coordsSEXP);
    Rcpp::traits::input_parameter< double >::type bw(bwSEXP);
    Rcpp::traits::input_parameter< bool >::type adaptive(adaptiveSEXP);
    Rcpp::traits::input_parameter< size_t >::type kernel(kernelSEXP);
    Rcpp::traits::input_parameter< bool >::type longlat(longlatSEXP);
    Rcpp::traits::input_parameter< double >::type p(pSEXP);
    Rcpp::traits::input_parameter< double >::type theta(thetaSEXP);
    Rcpp::traits::input_parameter< bool >::type intercept(interceptSEXP);
    Rcpp::traits::input_parameter< size_t >::type parallel_type(parallel_typeSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type parallel_arg(parallel_argSEXP);
    rcpp_result_gen = Rcpp::wrap(gwr_basic_predict(pcoords, x, y, coords, bw, adaptive, kernel, longlat, p, theta, intercept, parallel_type, parallel_arg));
    return rcpp_result_gen;
END_RCPP
}
// gwr_multiscale_fit
List gwr_multiscale_fit(const NumericMatrix& x, const NumericVector& y, const NumericMatrix& coords, const NumericVector& bw, const LogicalVector& adaptive, const IntegerVector& kernel, const LogicalVector& longlat, const NumericVector& p, const NumericVector& theta, const LogicalVector& optim_bw, const IntegerVector& optim_bw_criterion, const NumericVector& threashold, const IntegerVector& initial_type, const LogicalVector& centered, size_t criterion, bool hatmatrix, bool intercept, size_t retry_times, size_t max_iterations, size_t parallel_type, const IntegerVector& parallel_arg);
RcppExport SEXP _GWmodel3_gwr_multiscale_fit(SEXP xSEXP, SEXP ySEXP, SEXP coordsSEXP, SEXP bwSEXP, SEXP adaptiveSEXP, SEXP kernelSEXP, SEXP longlatSEXP, SEXP pSEXP, SEXP thetaSEXP, SEXP optim_bwSEXP, SEXP optim_bw_criterionSEXP, SEXP threasholdSEXP, SEXP initial_typeSEXP, SEXP centeredSEXP, SEXP criterionSEXP, SEXP hatmatrixSEXP, SEXP interceptSEXP, SEXP retry_timesSEXP, SEXP max_iterationsSEXP, SEXP parallel_typeSEXP, SEXP parallel_argSEXP) {
BEGIN_RCPP
    Rcpp::RObject rcpp_result_gen;
    Rcpp::RNGScope rcpp_rngScope_gen;
    Rcpp::traits::input_parameter< const NumericMatrix& >::type x(xSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type y(ySEXP);
    Rcpp::traits::input_parameter< const NumericMatrix& >::type coords(coordsSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type bw(bwSEXP);
    Rcpp::traits::input_parameter< const LogicalVector& >::type adaptive(adaptiveSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type kernel(kernelSEXP);
    Rcpp::traits::input_parameter< const LogicalVector& >::type longlat(longlatSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type p(pSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type theta(thetaSEXP);
    Rcpp::traits::input_parameter< const LogicalVector& >::type optim_bw(optim_bwSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type optim_bw_criterion(optim_bw_criterionSEXP);
    Rcpp::traits::input_parameter< const NumericVector& >::type threashold(threasholdSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type initial_type(initial_typeSEXP);
    Rcpp::traits::input_parameter< const LogicalVector& >::type centered(centeredSEXP);
    Rcpp::traits::input_parameter< size_t >::type criterion(criterionSEXP);
    Rcpp::traits::input_parameter< bool >::type hatmatrix(hatmatrixSEXP);
    Rcpp::traits::input_parameter< bool >::type intercept(interceptSEXP);
    Rcpp::traits::input_parameter< size_t >::type retry_times(retry_timesSEXP);
    Rcpp::traits::input_parameter< size_t >::type max_iterations(max_iterationsSEXP);
    Rcpp::traits::input_parameter< size_t >::type parallel_type(parallel_typeSEXP);
    Rcpp::traits::input_parameter< const IntegerVector& >::type parallel_arg(parallel_argSEXP);
    rcpp_result_gen = Rcpp::wrap(gwr_multiscale_fit(x, y, coords, bw, adaptive, kernel, longlat, p, theta, optim_bw, optim_bw_criterion, threashold, initial_type, centered, criterion, hatmatrix, intercept, retry_times, max_iterations, parallel_type, parallel_arg));
    return rcpp_result_gen;
END_RCPP
}

static const R_CallMethodDef CallEntries[] = {
    {"_GWmodel3_gwdr_fit", (DL_FUNC) &_GWmodel3_gwdr_fit, 17},
    {"_GWmodel3_gwr_basic_fit", (DL_FUNC) &_GWmodel3_gwr_basic_fit, 18},
    {"_GWmodel3_gwr_basic_predict", (DL_FUNC) &_GWmodel3_gwr_basic_predict, 13},
    {"_GWmodel3_gwr_multiscale_fit", (DL_FUNC) &_GWmodel3_gwr_multiscale_fit, 21},
    {NULL, NULL, 0}
};

RcppExport void R_init_GWmodel3(DllInfo *dll) {
    R_registerRoutines(dll, NULL, CallEntries, NULL, NULL);
    R_useDynamicSymbols(dll, FALSE);
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API