Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:4992801161930fddc28e5985fe5908571623877e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
\name{fit.model}
\alias{fit.model}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Fitting of parametric models using summary statistics}

\description{
Fits complex parametric models with intractable likelihood using the method proposed by Cox and Kartsonaki (2012).
%%  ~~ A concise (1-5 lines) description of what the function does. ~~
}
\usage{
fit.model(p, q, n, r, starting_values, h_vector, data_true, sim_data, features, n_iter,
print_results = TRUE, variances = TRUE)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{p}{Number of parameters to be estimated.}
  \item{q}{Number of features / summary statistics.}
  \item{n}{Sample size. Usually equal to the number of observations in the data (\code{data_true}).}
  \item{r}{Number of simulations to be run at each design point, in each iteration.}
  \item{starting_values}{A vector of starting values for the parameter vector.}
  \item{h_vector}{A vector of spacings \code{h}.}
  \item{data_true}{The dataset.}
  \item{sim_data}{A function which simulates data using the model to be fitted.}
  \item{features}{A function which calculates the features / summary statistics.}
  \item{n_iter}{Number of iterations of the algorithm to be performed.}
  \item{print_results}{If \code{TRUE}, the estimates of the parameters are printed at each iteration.}
  \item{variances}{If \code{TRUE}, the covariance matrix of the estimates of the parameters at each iteration are saved into a list. If \code{FALSE}, only that of the estimates obtained at the last iteration is obtained.}
}

\details{
Function \code{sim_data} should simulate from the model, taking as arguments the sample size and the parameter vector.
Function \code{features} must take as an argument the simulated data generated by \code{sim_data} and calculate the features / summary statistics. The format of the dataset and the simulated data should be the same and should match the format needed by the function \code{features}. Function \code{features} must return a vector of length \code{q}.

%%  ~~ If necessary, more details than the description above ~~
}
\value{
	\item{estimates}{The estimates of the parameters.}
	\item{var_estimates}{The covariance matrix of the final estimates.}
	\item{L}{The matrix of coefficients L.}
	\item{sigma}{The covariance matrix of the features.}
	\item{zbar}{The average values of the simulated features at each design point.}
	\item{z_D}{The values of the features calculated from the data.}
	\item{ybar}{The linear combinations of the simulated features at each design point.}
	\item{y_D}{The linear combinations of the features calculated from the data.}
}
\references{
Cox, D. R. and Kartsonaki, C. (2012). The fitting of complex parametric models. \emph{Biometrika}, \bold{99} (3): 741--747.
}
\author{Christiana Kartsonaki}

%\note{
%%  ~~further notes~~
%}

%\seealso{
%% ~~objects to See Also as \code{\link{help}}, ~~~
%}
\examples{
# estimate the mean of a N(2, 1) distribution

sim_function <- function(n, mu) {
	rnorm(n, unlist(mu), 1)
	}

features_function <- function(data) {
	a <- median(data)
	b <- sum(data) - (min(data) + max(data))
	c <- (min(data) + max(data)) / 2
	return(c(a, b, c))
	}
	
fit1 <- fit.model(p = 1, q = 3, n = 100, r = 100, starting_values = 5, h_vector = 0.1,
data_true = rnorm(100, 2, 1), sim_data = sim_function, features = features_function, 
n_iter = 50, print_results = TRUE, variances = TRUE) 
}

% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
%\keyword{ ~kwd1 }
%\keyword{ ~kwd2 }% __ONLY ONE__ keyword per line

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top