Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:6a0ac420dcf26f4ce7b9c8b5d3c5816f5620bd13
  • Code
  • Branches (20)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.2.2
    • refs/tags/1.3.1
    • refs/tags/1.3.2
    • refs/tags/1.3.4
    • refs/tags/1.4.0
    • refs/tags/1.4.1
    • refs/tags/1.4.2
    • refs/tags/1.4.4
    • refs/tags/1.4.5
    • refs/tags/1.5.0
    • refs/tags/1.5.1
    • refs/tags/1.5.2
    • refs/tags/1.5.5
    • refs/tags/1.5.6
    • refs/tags/1.5.7
    • refs/tags/1.5.8
    • refs/tags/1.5.9
    • refs/tags/1.6.1
    • refs/tags/1.6.2
    No releases to show
  • ce51085
  • /
  • README.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:49c89046b1bb04a99454c782c2952f5c5385a047
directory badge Iframe embedding
swh:1:dir:ce51085e066fa9d52bdad1c671d29cc65c17ee06
revision badge
swh:1:rev:11f1ef137931871a851aa94ab98296376fc10888
snapshot badge
swh:1:snp:6a0ac420dcf26f4ce7b9c8b5d3c5816f5620bd13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 11f1ef137931871a851aa94ab98296376fc10888 authored by Mark Clements on 08 March 2023, 12:20:05 UTC
version 1.6.2
Tip revision: 11f1ef1
README.md
### rstpm2: An R package for link-based survival models ###

#### NOTE: versions 1.4.1 and 1.4.2 of rstpm2 included a critical bug in the predict function for type in "hr", "hdiff", "meanhr" or "marghr". ####

Introduction
-----------

 

This package provides link-based survival models that extend the Royston-Parmar models, a family of flexible parametric models. There are two main classes included in this package:

 

A. The class `stpm2` is an R version of `stpm2` in Stata with some extensions, including:

1. Multiple links (log-log, -probit, -logit);

2. Left truncation and right censoring (with experimental support for interval censoring);

3. Relative survival;

4. Cure models (where we introduce the `nsx` smoother, which extends the `ns` smoother);

5. Predictions for survival, hazards, survival differences, hazard differences, mean survival, etc;

6. Functional forms can be represented in regression splines or other parametric forms;

7. The smoothers for time can use any transformation of time, including no transformation or log(time).

 

B. Another class `pstpm2` is the implementation of the penalised models and corresponding penalized likelihood estimation methods. The main aim is to represent another way to deal with non-proportional hazards and  adjust for potential continuous confounders in functional forms, not limited to proportional hazards and linear effect forms for all covariates. Functional forms can be represented in penalized regression splines (all `mgcv` smoothers ) or other parametric forms.


Some examples
-------------

<!--
require(rstpm2)
data(brcancer)
fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3) jpeg(filename="~/src/R/rstpm2/inst/fig1-README.md.jpg") plot(fit,newdata=data.frame(hormon=0),type="hazard")
dev.off()
-->

The default for the parametric model is to use the Royston Parmar model, which uses a natural spline for the transformed baseline for log(time) with a log-log link. 

```
require(rstpm2)
data(brcancer)
fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3)
plot(fit,newdata=data.frame(hormon=0),type="hazard")
```

<!--img src="inst/fig1-README.md.jpg" alt="(Hazard plot)" style="width:304px;height:228px;"-->
<img src="inst/fig1-README.md.jpg" alt="(Hazard plot)">

The default for the penalised model is similar, using a thin-plate spline for the transformed baseline for log(time) with a log-log link. The advantage of the penalised model is that there is no need to specify the knots or degrees of freedom for the baseline smoother.

<!--
fit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer)
jpeg(filename="~/src/R/rstpm2/inst/fig2-README.md.jpg")
plot(fit,newdata=data.frame(hormon=0),type="hazard")
dev.off()
-->

```
fit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer)
plot(fit,newdata=data.frame(hormon=0),type="hazard")
```

<img src="inst/fig2-README.md.jpg" alt="(Hazard plot 2)">

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API