Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://gitlab.com/mcoavoux/mtgpy-release-findings-2021.git
04 December 2021, 19:36:23 UTC
  • Code
  • Branches (1)
  • Releases (1)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • c9972219cd75049269d26632d2bb79619d661298
    • v1.0
  • a387b78
  • /
  • src
  • /
  • Asgd.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:4b8c623a03e6fc2a711dc9a98833d51c81b8753c
origin badgedirectory badge Iframe embedding
swh:1:dir:18c8d5ffba1b141866b03a2717f92cafe55d5c89
origin badgerevision badge
swh:1:rev:c9972219cd75049269d26632d2bb79619d661298
origin badgesnapshot badge
swh:1:snp:c3b19ab77fec904d36694903d5dade0c8b1c98fc
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: c9972219cd75049269d26632d2bb79619d661298 authored by mcoavoux on 20 May 2021, 13:04:44 UTC
up readme
Tip revision: c997221
Asgd.py
import torch
from torch.optim.optimizer import Optimizer
from torch.optim import Adam

class AAdam(Adam):
    def __init__(self, *args, start=200, **kwargs):
        super(AAdam, self).__init__(*args, **kwargs)

        self.n_steps = 0
        self.start = start

    def __setstate__(self, state):
        super(AAdam, self).__setstate__(state)

    def step(self, closure=None):
        super(AAdam, self).step(closure)
        self.n_steps += 1
        if self.n_steps > self.start:
            for group in self.param_groups:
                for p in group['params']:
                    param_state = self.state[p]
                    if 'cache' not in param_state:
                        param_state['cache'] = torch.zeros_like(p.data)
                        param_state['saved'] = torch.zeros_like(p.data)
                    param_state['cache'].add_(p)

    def average(self):
        if self.n_steps <= self.start:
            return
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                param_state['saved'].copy_(p.data)
                p.data.copy_(param_state['cache'] / (self.n_steps - self.start))

    def cancel_average(self):
        if self.n_steps <= self.start:
            return
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                p.data.copy_(param_state['saved'])





class MyAsgd(Optimizer):
    def __init__(self, params, lr=0.01, momentum=0, weight_decay=0, 
                 k=-1, gaussian_noise=True, noise=0.01, dc=1e-7):
        defaults = dict(lr=lr, momentum=momentum,
                        weight_decay=weight_decay)
        super(MyAsgd, self).__init__(params, defaults)
        self.n_steps = 1
        self.k = k
        self.gaussian_noise = gaussian_noise
        self.noise = noise
        self.lr = lr
        self.lr_bert = None
        if len(self.param_groups) > 1:
            self.lr_bert = self.param_groups[1]["lr"]
        self.dc = dc
        #self.warmup = warmup

        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                param_state['noise'] = torch.zeros_like(p.data)
                param_state['cache'] = torch.zeros_like(p.data)
                param_state['cache'].copy_(p.data)


    def _get_rate(self, i):
        # i == 0: not bert
        # i != 0: bert
        lr_base = [self.lr, self.lr_bert][i]
        if self.n_steps > 1000:
            return lr_base / (1 + self.n_steps * self.dc)
        standard = lr_base / (1 + self.n_steps * self.dc)
        return standard * self.n_steps / 1000

    def __setstate__(self, state):
        super(MyAsgd, self).__setstate__(state)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
        for i, group in enumerate(self.param_groups):
            group['lr'] = self._get_rate(i)
            weight_decay = group['weight_decay']
            momentum = group['momentum']

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay * p.data)

                param_state = self.state[p]
                if momentum != 0:
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(d_p * (1 - dampening))

                if self.gaussian_noise:
#                    if 'noise' not in param_state:
#                        param_state['noise'] = torch.zeros_like(p.data)
                    noise = param_state['noise']
                    noise.normal_(0, std=self.noise / (1 + self.n_steps)**0.55)
                    d_p.add_(noise)

                if self.n_steps >= self.k:
#                    if 'cache' not in param_state:
#                        param_state['cache'] = torch.zeros_like(p.data)
#                        param_state['cache'].copy_(p.data)
                    param_state['cache'].add_(d_p * (-group['lr']*self.n_steps))
                p.data.add_(d_p * -group['lr'])

        self.n_steps += 1
        return loss


    def average(self):
        if self.n_steps < self.k:
            return
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                if 'saved' not in param_state:
                    param_state['saved'] = torch.zeros_like(p.data)
                param_state['saved'].copy_(p.data)
                if 'cache' in param_state:
                    p.data.add_(param_state['cache'] * (-1/self.n_steps))

    def cancel_average(self):
        if self.n_steps < self.k:
            return
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                p.data.copy_(param_state['saved'])





Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top