Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • nFactors-parameters.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:4bbabfc88a05f711287455843b95b295acce92bc
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
nFactors-parameters.rd
\name{nFactors-parameters}
\alias{nFactors-parameters}
\alias{nFactors-parameters}
\docType{package}
\title{ Argument and Value Parameters Common to the Different Functions Available in Package nFactors}


\description{
 This help file describes the argument and value parameters used in the different functions
 available in package \pkg{nFactors}.  \cr
 
 \emph{Arguments}:
  \enumerate{
  \item{\emph{adequacy}:}{          logical: if \code{TRUE} print the recovered
                                    population matrix from the factor structure
                                    (\code{structureSim})}
  \item{\emph{all}:}{               logical:   if \code{TRUE} computes athe Bentler and Yuan
                                    index (very long computating time to consider)
                                    (\code{structureSim, studySim})}
  \item{\emph{alpha}:}{             numeric: statistical significance level
                                    (\code{nBartlett, nBentler})}
  \item{\emph{aparallel}:}{         numeric: results of a parallel analysis
                                    (\code{nScree}) }
  \item{\emph{cent}:}{              depreciated numeric (use quantile instead):
                                    quantile of the distribution
                                    (\code{moreStats, parallel})}
  \item{\emph{communalities}:}{     character: initial values for communalities
                                    (\code{"component"},
                                    \code{"ginv"}, \code{"maxr"}, or \code{"multiple"})
                                    (\code{iterativePrincipalAxis, principalAxis})}
  \item{\emph{cor}:}{               logical: if \code{TRUE} computes eigenvalues
                                    from a correlation
                                    matrix, else from a covariance matrix
                                    (\code{eigenComputes, nBartlett, nBentler,
                                    nCng, nMreg, nScree, nSeScree})}
  \item{\emph{correction}:}{        logical: if \code{TRUE} use a correction
                                    for the degree
                                    of freedom after the first eigenvalue (\code{nBartlett})}
  \item{\emph{criteria}:}{          numeric: by default fixed at \eqn{\hat{\lambda}}.
                                    When the \eqn{\lambda}s are computed prom a principal components
                                    analysis on a correlation matrix, it correspons to the
                                    usual Kaiser \eqn{\lambda >= 1} rule. On a covariance matrix
                                    or from a factor analysis, it is simply the mean.
                                    To apply the \eqn{\lambda >= 0} sometimes used with factor
                                    analysis, fixed the criteria to \eqn{0} (\code{nScree})}
  \item{\emph{details}:}{           logical: if \code{TRUE} also return detains about the
                                    computation for each eigenvalues (\code{nBartlett, nBentler,
                                    nCng, nMreg, structureSim})}
  \item{\emph{diagCommunalities}:}{ logical: if \code{TRUE}, the correlation between
                                    the initial
                                    solution and the estimated one will use a
                                    correlation of one in the diagonal.
                                    If \code{FALSE} (default) the diagonal is not
                                    used in the computation of
                                    this correlation or covariance matrix
                                    (\code{rRecovery})}
  \item{\emph{dir}:}{               character:  Directory where to save output
                                    (\code{studySim})}
  \item{\emph{eig}:}{               depreciated parameter (use x instead): Eigenvalues to analyse
                                    (\code{nScree,  plotParallel})}
  \item{\emph{Eigenvalue}:}{        depreciated parameter (use x instead): eigenvalues to analyse
                                    (\code{plotuScree})}
  \item{\emph{fload}:}{             matrix: loadings of the factor structure (\code{structureSim})}
  \item{\emph{graphic}:}{           logical: specific plot (\code{bentlerParameters, structureSim})}
  \item{\emph{index}:}{             numeric: vector of the index of the selected indices
                                    (\code{plot.structureSim, print.structureSim, summary.structureSim}}
  \item{\emph{iterations}:}{        numeric: maximum number of iterations to obtain a solution
                                    (\code{iterativePrincipalAxis})}
  \item{\emph{legend}:}{            Logical indicator of the presence or not of a legend (\code{plotnScree, plotParallel}) }
  \item{\emph{loadings}:}{          numeric: loadings from a factor analysis solution (\code{rRecovery, generateStructure, studySim})}
  \item{\emph{log}:}{               logical: if \code{TRUE} does the minimization on the log values  (\code{bentlerParameters, nBentler})}
  \item{\emph{main}:}{              character: main title (\code{plotnScree, plotParallel, plotuScree, boxplot.structureSim,
                                    plot.structureSim}) }
  \item{\emph{maxPar}:}{            numeric: maximums for the coefficient of the linear trend to minimize
                                    (\code{bentlerParameters, nBentler})}
  \item{\emph{minPar}:}{            numeric: minimums for the coefficient of the linear trend to minimize
                                    (\code{bentlerParameters, nBentler})}
  \item{\emph{method}:}{            character: actually only \code{"giv"} is supplied to compute the
                                    approximation of the communalities by  maximum correlation
                                    (\code{corFA, nCng, nMreg, nScree, nSeScree})}
  \item{\emph{mjc}:}{               numeric: number of major factors (factors with practical significance)
                                    (\code{generateStructure}) }
  \item{\emph{pmjc}:}{              numeric: number of variables that load significantly on each major factor
                                    (\code{generateStructure})}
  \item{\emph{model}:}{             character: \code{"components"} or \code{"factors"}  (\code{nScree, parallel, plotParallel,
                                    plotuScree, structureSim, eigenBootParallel, eigenBootParallel, studySim})}
  \item{\emph{N}:}{                 numeric:  number of subjects (\code{nBartlett, bentlerParameters, nBentler, studySim})}
  \item{\emph{nboot}:}{             numeric: number of bootstrap samples (\code{eigenBootParallel}) }
  \item{\emph{nFactors}:}{          numeric: number of components/factors to retained (\code{componentAxis,
                                    iterativePrincipalAxis, principalAxis, bentlerParameters, boxplot.structureSim, studySim})}
  \item{\emph{nScree}:}{            results of a previous nScree analysis (\code{plotnScree})}
  \item{\emph{option}:}{            character: \code{"permutation"} or \code{"bootstrap"} (\code{eigenBootParallel})}
  \item{\emph{object}:}{            nScree: an object of the class nScree \code{is.nScree, summary.nScree} }
  \item{\emph{object}:}{            structureSim: an object of the class structureSim (\code{is.structureSim,
                                    summary.structureSim})}

  \item{\emph{parallel}:}{          numeric: vector of the result of a previous parallel analysis (\code{plotParallel})}
  \item{\emph{pmjc}:}{              numeric: number of major loadings on each factor factors (\code{generateStructure, studySim}) }
  \item{\emph{quantile}:}{          numeric: quantile that will be reported (\code{parallel, moreStats,
                                    eigenBootParallel, structureSim, studySim}) }
  \item{\emph{R}:}{                 numeric: correlation or covariance matrix (\code{componentAxis, iterativePrincipalAxis,
                                    principalAxis, principalComponents, rRecovery, corFA})}
  \item{\emph{r2limen}:}{           numeric: R2 limen value for the R2 index of Nelson (\code{structureSim, nSeScree, studySim})}
  \item{\emph{rep}:}{               numeric: number of replications of the correlation or the covariance matrix (default is 100) (\code{parallel})}
  \item{\emph{reppar}:}{            numeric: number of replication for the parallel analysis (\code{structureSim, studySim})}
  \item{\emph{repsim}:}{            numeric: number of replication of the matrix correlation simulation (\code{structureSim, studySim})}
  \item{\emph{resParx}:}{           numeric: restriction on the \eqn{\alpha} coefficient (x) to graph the function to minimize
                                    (\code{bentlerParameters})}
  \item{\emph{resolution}:}{        numeric: resolution of the 3D graph (number of points from \eqn{\alpha} and from \eqn{\beta}).}
  \item{\emph{resPary}:}{           numeric: restriction on the \eqn{\beta} coefficient (y) to graph the function to minimize
                                    (\code{bentlerParameters})}
  \item{\emph{sd}:}{                numeric: vector of standard deviations of the simulated variables
                                    (for a parallel analysis on a covariance matrix) \code{parallel})}
  \item{\emph{show}:}{              logical: if \code{TRUE} print the quantile choosen (\code{moreStats}) }
  \item{\emph{stats}:}{             numeric:   vector of the statistics to return: mean(1),
                                    median(2), sd(3), quantile(4), min(5), max(6)
                                    (\code{studySim})}
  \item{\emph{subject}:}{           numeric: number of subjects (default is 100) (\code{parallel})}
  \item{\emph{tolerance}:}{         numeric: minimal difference in the estimated communalities after a given iteration
                                    (\code{iterativePrincipalAxis})}
  \item{\emph{trace}:}{             logical:   if \code{TRUE} output details of the status of the simulations
                                    (\code{studySim})}
  \item{\emph{typePlot}:}{          character: plot the minimized function according to a 3D plot: \code{"wireframe"},
                                    \code{"contourplot"} or \code{"levelplot"}  (\code{bentlerParameters})}
  \item{\emph{unique}:}{            numeric: loadings on the non significant variables on each major factor
                                    (\code{generateStructure, studySim}) }
  \item{\emph{upper}:}{             logical: if \code{TRUE} the upper diagonal is replaced with the lower
                                    diagonal. If \code{FALSE}, lower diagonal is replaced with upper diagonal
                                    (\code{diagReplace})}
  \item{\emph{use}:}{               character: how to deal with missing values, same as the
                                    parameter from the \code{corr} function (\code{eigenBootParallel}) }
  \item{\emph{var}:}{               numeric: number of variables (default is 10) (\code{parallel, generateStructure, studySim}) }
  \item{\emph{vLine}:}{             character: color of the vertical indicator line in the eigen boxplot
                                    (\code{boxplot.structureSim})}
  \item{\emph{x}:}{                 numeric: a \code{vector} of eigenvalues, a \code{matrix} of
                                    correlations or of covariances or a \code{data.frame} of data
                                    (\code{eigenFrom, nBartlett, nCng, nMreg})}
  \item{\emph{xlab}:}{              character: label of the x axis (\code{plotnScree, plotParallel, plotuScree,
                                    boxplot.structureSim})}
  \item{\emph{x}:}{                 data.frame: data from which a correlation or covariance matrix will be obtained (\code{eigenBootParallel})}
  \item{\emph{x}:}{                 DEPRECIATED: (\code{plotParallel})}
  \item{\emph{x}:}{                 nScree: an object of the class nScree (\code{plot.nScree, print.nScree})}
  \item{\emph{x}:}{                 numeric: matrix (\code{makeCor})}
  \item{\emph{x}:}{                 numeric: matrix or data.frame (\code{moreStats})}
  \item{\emph{x}:}{                 structureSim: an object of the class structureSim (\code{boxplot.structureSim,
                                    plot.structureSim, print.structureSim})}
  \item{\emph{ylab}:}{              character: label of the y axis (\code{plotnScree, plotParallel, plotuScree,
                                    boxplot.structureSim}) }
  }



 \emph{Values}:
 \enumerate{
  \item{\emph{cor}:}{          numeric: Pearson correlation between initial and recovered estimated
                               correlation or covariance matrix. Computions depend on the
                               logical value of the \code{communalities} argument (\code{rRecovery}) }
  \item{\emph{details}:}{      numeric: matrix of the details for each indices  (\code{nBartlett, bentlerParameters, nCng, nMreg})}
  \item{\emph{difference}:}{   numeric: difference between initial and recovered estimated
                               correlation or covariance matrix (\code{rRecovery})}
  \item{\emph{iterations}:}{   numeric: maximum number of iterations to obtain a solution (\code{iterativePrincipalAxis})}
  \item{\emph{loadings}:}{     numeric: loadings of each variable on each component or factor retained (\code{componentAxis,
                               iterativePrincipalAxis, principalAxis, principalComponents}) }
  \item{\emph{nFactors}:}{     numeric: vector of the number of components or factors retained by the
                               Bartlett, Anderson and Lawley procedures  (\code{nBartlett, bentlerParameters, nCng, nMreg}) }
  \item{\emph{R}: }{           numeric: correlation or covariance matrix (\code{diagReplace, rRecovery})}
  \item{\emph{recoveredR}:}{   numeric: recovered estimated correlation or covariance matrix (\code{rRecovery}) }
  \item{\emph{tolerance}:}{    numeric: minimal difference in the estimated communalities after a given iteration
                               (\code{iterativePrincipalAxis})}
  \item{\emph{values}:}{       numeric: data.frame of information (\code{nScree, parallel, plotnScree, plotParallel,
                               plotuScree, structureSim})}
  \item{\emph{values}:}{       numeric: data.frame of statistics (\code{moreStats}) }
  \item{\emph{values}:}{       numeric: full matrix of correlation or covariance (\code{makeCor}) }
  \item{\emph{values}:}{       numeric: variance of each component or factor (\code{iterativePrincipalAxis, principalComponents}) }
  \item{\emph{values}:}{       data.frame: mean, median, quantile, standard deviation,
                               minimum and maximum of bootstrapped eigenvalues (\code{eigenBootParallel})}
  \item{\emph{values}:}{       numeric: matrix of correlation or covariance with communalities in the diagonal (\code{corFA})}
  \item{\emph{values}:}{       numeric: variance of each component or factor retained (\code{componentAxis, principalAxis}) }
  \item{\emph{values}:}{       numeric: matrix factor structure (\code{generateStructure})}
  \item{\emph{varExplained}:}{ numeric: variance explained by each component or factor retained (\code{componentAxis, iterativePrincipalAxis,
                               principalAxis, principalComponents}) }
  \item{\emph{varExplained}:}{ numeric: cumulative variance explained by each component or factor retained (\code{componentAxis,
                               iterativePrincipalAxis, principalAxis, principalComponents}) }
  }
 }

\author{
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/} \cr \cr
    David Magis \cr
    Research Group of Quantitative Psychology and Individual Differences \cr
    Katholieke Universiteit Leuven \cr
    \email{David.Magis@psy.kuleuven.be}, \url{http://ppw.kuleuven.be/okp/home/}
 }

 \references{
  Raiche, G., Riopel, M. and Blais, J.-G. (2006). \emph{Non graphical solutions
  for the Cattell's scree test}. Paper presented at the International Annual
  meeting of the Psychometric Society, Montreal.
 [\url{http://www.er.uqam.ca/nobel/r17165/RECHERCHE/COMMUNICATIONS/}]
 }


\seealso{
 Other packages are also very useful for principal components and factor analysis.
 The \emph{R} psychometric view is instructive at this point.
 See \url{http://cran.stat.sfu.ca/web/views/Psychometrics.html} for further details.
 }


\keyword{ package }



Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top