Raw File
emgr_oct.m
function W = emgr_oct(f,g,s,t,w,pr=0,nf=0,ut=1,us=0,xs=0,um=1,xm=1,dp=@mtimes)
## emgr - EMpirical GRamian Framework
#
#  project: emgr ( http://gramian.de )
#  version: 5.2-oct ( 2017-08-01 )
#  authors: Christian Himpe ( 0000-0003-2194-6754 )
#  license: BSD 2-Clause License ( opensource.org/licenses/BSD-2-Clause )
#  summary: Empirical Gramians for model reduction of input-output systems.
#
# USAGE:
#
#  W = emgr_oct(f,g,s,t,w,[pr],[nf],[ut],[us],[xs],[um],[xm],[dp])
#
# DESCRIPTION:
#
# Empirical gramian matrix and empirical covariance matrix computation
# for model reduction, decentralized control, nonlinearity quantification,
# sensitivity analysis, parameter identification, uncertainty quantification &
# combined state and parameter reduction of large-scale input-output systems.
# Data-driven analysis of input-output coherence and system-gramian-based
# nonlinear model order reduction. Compatible with OCTAVE and MATLAB.
#
# ARGUMENTS:
#
#   f {handle} vector field handle: x' = f(x,u,p,t)
#   g {handle} output function handle: y = g(x,u,p,t)
#   s {vector} system dimensions: [inputs,states,outputs]
#   t {vector} time discretization: [time-step,time-horizon]
#   w {string} single character encoding gramian type:
#    * 'c' empirical controllability gramian (Wc)
#    * 'o' empirical observability gramian (Wo)
#    * 'x' empirical cross gramian (Wx aka Wco or Xcg)
#    * 'y' empirical linear cross gramian (Wy)
#    * 's' empirical sensitivity gramian (Ws)
#    * 'i' empirical identifiability gramian (Wi)
#    * 'j' empirical joint gramian (Wj)
#  pr {matrix|0} parameters, each column is one set
#  nf {vector|0} option flags, twelve components, default zero:
#    * center: no(0), steady(1), last(2), mean(3), rms(4), midrange(5)
#    * input scales: single(0), linear(1), geom(2), log(3), sparse(4)
#    * state scales: single(0), linear(1), geom(2), log(3), sparse(4)
#    * input rotations: unit(0), single(1)
#    * state rotations: unit(0), single(1)
#    * scale type: no(0), Jacobi preconditioner(1), steady-state(2)
#    * cross gramian type (only: Wx, Wy, Wj): regular(0), non-symmetric(1)
#    * extra input (only: Wo, Wx, Ws, Wi, Wj): no(0), yes(1)
#    * parameter centering (only: Ws, Wi, Wj): no(0), linear(1), log(2)
#    * Schur-complement (only: Wi, Wj): detailed(0), approximate(1)
#    * cross gramian partition size (only: Wx, Wj): full(0), partitioned(<N)
#    * cross gramian partition index (only: Wx, Wj): partition(>0)
#  ut {handle|1} input function handle: u = ut(t), default: delta impulse
#  us {vector|0} steady-state input
#  xs {vector|0} steady-state and initial state x0
#  um {matrix|1} input scales
#  xm {matrix|1} initial-state scales
#  dp {handle|1} custom inner product handle: z = dp(x,y), default: @mtimes
#
# RETURNS:
#
#  W {matrix} Gramian Matrix (only: Wc, Wo, Wx, Wy)
#  W  {cell}  [State-, Parameter-] Gramian (only: Ws, Wi, Wj)
#
# CITATION:
#
#  C. Himpe (2017). emgr - EMpirical GRamian Framework (Version 5.2)
#  [Software]. Available from http://gramian.de . doi: 10.5281/zenodo.837237
#
# SEE ALSO:
#  gram
#
# KEYWORDS:
#
#  model reduction, empirical gramians, cross gramian matrix, MOR
#
# Further information: http://gramian.de

## GENERAL SETUP
    global ODE; # Integrator Handle
    if(isa(ODE,'function_handle')==0), ODE = @ssp2; endif;

    # Version Info
    if(strcmp(f,'version')), W = 5.2; return; endif;

    w = lower(w); # Ensure lower case gramian type

## GRAMIAN SETUP

    # System Dimensions
    M = s(1);                   # Number of inputs
    N = s(2);                   # Number of states
    Q = s(3);                   # Number of outputs
    A = (numel(s)==4) * s(end); # Number of augmented parameter-states
    P = size(pr,1);             # Dimension of parameter
    K = size(pr,2);             # Number of parameter-sets
    h = t(1);                   # Width of time step
    L = floor(t(2)/h) + 1;      # Number of time steps plus initial value

    # Lazy Arguments
    if(isnumeric(g) && g==1)    # Assume unit output functional
        g = @(x,u,p,t) x;
        Q = N;
    endif;

    nf = [nf(:)',zeros(1,12-numel(nf))]; # Ensure flag vector length

    if(isnumeric(ut) && numel(ut)==1) # Built-in input functions
        if(ut==Inf)   # Linear Chirp Input
            mh = ones(M,1);
            sh = (1.0/L - 0.1/h) / L;
            ut = @(t) 0.5 + mh*0.5*cos(2.0*pi*(((0.1/h)+0.5*sh*t).*t));
        else          # Delta Impulse Input
            mh = ones(M,1)./h;
            ut = @(t) mh * (t<=h);
        endif;
    endif;

    if(numel(us)==1), us = us * ones(M,1); endif;
    if(numel(xs)==1), xs = xs * ones(N,1); endif;
    if(numel(um)==1), um = um * ones(M,1); endif;
    if(numel(xm)==1), xm = xm * ones(N-(w=='y')*(N-M),1); endif;

    if(size(um,2)==1), um = scales(um,nf(2),nf(4)); endif;
    if(size(xm,2)==1), xm = scales(xm,nf(3),nf(5)); endif;

    C = size(um,2); # Number of input scales sets
    D = size(xm,2); # Number of state scales sets

    if(nf(6)) # Scaled empirical gramians
        TX = ones(N,1);
        NF = nf;
        NF(6) = 0;
        switch(nf(6))

            case 1 # Use Jacobi Preconditioner (state only)
                DP = @(x,y) diag(sum(x.*y',2)); # Diagonal-only pseudo-kernel
                WT = emgr_oct(f,g,s,t,w,pr,NF,ut,us,xs,um,xm,DP);
                TX = sqrt(diag(WT));

            case 2 # Scale by steady-state and steady-state input
                TX(xs~=0) = xs(xs~=0);
        endswitch
        tx = 1.0./TX;
        F = f; f = @(x,u,p,t) tx.*F(TX.*x,u,p,t);
        G = g; g = @(x,u,p,t)     G(TX.*x,u,p,t);
        xs = tx.*xs;
    endif

    if( (w=='o' || w=='x' || w=='s') && nf(8) ) # Extra input
        up = @(t) us + ut(t);
    else
        up = @(t) us;
    endif;

## GRAMIAN COMPUTATION

    switch(w) # Empirical gramian types

        # Common layout:
        #  Setup: Pre-allocate memory for gramian matrix
        #  Loop nesting: for-each {parameter set, input|state|parameter scale}
        #  Loop bodies: perturb, simulate, center, normalize, store|accumulate
        #  Post-processing: normalize, (symmetrize), (decompose)
        #  Parameter-space gramians call state-space gramians

        case 'c' # Controllability gramian
            W = zeros(N,N); # Pre-allocate gramian matrix
            for k = 1:K
                for c = 1:C
                    for m = find(um(:,c))' # parfor
                        uu = @(t) us + ut(t) .* sparse(m,1,um(m,c),M,1);
                        x = ODE(f,@(x,u,p,t) x,t,xs,uu,pr(:,k));
                        x -= avg(x,nf(1),xs);
                        x *= 1.0/um(m,c);
                        W += dp(x,x');
                    endfor;
                endfor;
            endfor;
            W *= h/(C*K);
            W = 0.5 * (W + W');

        case 'o' # Observability gramian
            W = zeros(N+A,N+A); # Pre-allocate gramian matrix
            o = zeros(Q*L,N+A);
            for k = 1:K
                for d = 1:D
                    for n = find(xm(:,d))' # parfor
                        xx = xs + sparse(n,1,xm(n,d),N+A,1);
                        if(A==0), pp = pr(:,k); else, pp = xx(N+1:end); endif;
                        y = ODE(f,g,t,xx(1:N),up,pp);
                        y -= avg(y,nf(1),g(xs(1:N),us,pp,0));
                        y *= 1.0/xm(n,d);
                        o(:,n) = y(:);
                    endfor;
                    W += dp(o',o);
                endfor;
            endfor;
            W *= h/(D*K);
            W = 0.5 * (W + W');

        case 'x' # Cross gramian
            assert(M==Q || nf(7),'emgr: non-square system!');

            i0 = 1;
            i1 = N+A;

            if(nf(11)>0) # Partitioned cross gramian

                i0 = i0 + (nf(12)-1)*nf(11);
                i1 = min(i0+nf(11)-1,N);

                if(i0>N)
                    i0 = i0 - ( ceil( N/nf(11) ) * nf(11) - N);
                    i1 = min(i0+nf(11)-1,N+A);
                endif;

                if(i0>i1 || i0<0), W = 0; return; endif;
            endif;

            W = zeros(N,i1-i0+1); # Pre-allocate gramian matrix (partition)
            o = zeros(L,i1-i0+1,Q);

            for k = 1:K
                for d = 1:D
                    for n = find(xm(i0:i1,d))' # parfor
                        xx = xs + sparse(i0-1+n,1,xm(n,d),N+A,1);
                        if(A==0), pp = pr(:,k); else, pp = xx(N+1:end); endif;
                        y = ODE(f,g,t,xx(1:N),up,pp);
                        y -= avg(y,nf(1),g(xs(1:N),us,pp,0));
                        y *= 1.0/xm(n,d);
                        o(:,n,:) = y';
                    end;
                    if(nf(7)) # Non-symmetric cross gramian: cache average
                        o(:,:,1) = sum(o,3);
                    end;
                    for c = 1:C
                        for m = find(um(:,c))' # parfor
                            uu = @(t) us + ut(t) .* sparse(m,1,um(m,c),M,1);
                            if(A==0), pp = pr(:,k); else, pp = xs(N+1:end); endif;
                            x = ODE(f,@(x,u,p,t) x,t,xs(1:N),uu,pp);
                            x -= avg(x,nf(1),xs(1:N));
                            x *= 1.0/um(m,c);
                            if(nf(7)) # Non-symmetric cross gramian
                                W += dp(x,o(:,:,1));
                            else      # Regular cross gramian
                                W += dp(x,o(:,:,m));
                            endif;
                        endfor;
                    endfor;
                endfor;
            endfor;
            W *= h/(C*D*K);

        case 'y' # Linear cross gramian
            assert(M==Q || nf(7),'emgr: non-square system!');

            W = zeros(N,N); # Pre-allocate gramian matrix
            o = zeros(N,L,M);

            for k = 1:K
                for c = 1:C
                    for m = find(um(:,c))' # parfor
                        uu = @(t) us + ut(t) .* sparse(m,1,um(m,c),M,1);
                        x = ODE(f,@(x,u,p,t) x,t,xs,uu,pr(:,k));
                        x -= avg(x,nf(1),xs);
                        x *= 1.0/um(m,c);
                        o(:,:,m) = x;
                    endfor;
                    if(nf(7)) # Non-symmetric cross gramian: cache average
                        o(:,:,1) = sum(o,3);
                    endif;
                    for q = find(xm(:,c))' # parfor
                        uu = @(t) us + ut(t) .* sparse(q,1,xm(q,c),Q,1);
                        z = ODE(g,@(x,u,p,t) x,t,xs,uu,pr(:,k));
                        z -= avg(z,nf(1),xs);
                        z *= 1.0/xm(q,c);
                        if(nf(7)) # Non-symmetric cross gramian
                            W += dp(o(:,:,1),z');
                        else      # Regular cross gramian
                            W += dp(o(:,:,q),z');
                        endif;
                    endfor;
                endfor;
            endfor;
            W *= h/(C*K);

        case 's' # Sensitivity gramian
            [pr,pm] = pscales(pr,nf(9),size(um,2));
            W{1} = emgr_oct(f,g,[M,N,Q],t,'c',pr,nf,ut,us,xs,um,xm,dp);
            W{2} = zeros(P,1); # Sensitivity gramian diagonal
            DP = @(x,y) sum(sum(x.*y')); # Trace pseudo-kernel
            UT = @(t) 1.0;
            for k=1:P
                ek = sparse(k,1,1.0,P,1);
                F = @(x,u,p,t) f(x,up(t),pr + u * ek,t);
                W{2}(k) = emgr_oct(F,g,[1,1,Q],t,'c',0,nf,UT,0,xs,pm(k,:),xm,DP);
            endfor;

        case 'i' # Identifiability gramian
            [pr,pm] = pscales(pr,nf(9),size(xm,2));
            V = emgr_oct(f,g,[M,N,Q,P],t,'o',0,nf,ut,us,[xs;pr],um,[xm;pm],dp);
            W{1} = V(1:N,1:N); # Observability gramian
            WM = V(1:N,N+1:N+P);
            if(nf(10))         # Identifiability gramian
                W{2} = V(N+1:N+P,N+1:N+P);
            else
                W{2} = V(N+1:N+P,N+1:N+P) - (WM' * ainv(W{1}) * WM);
            endif;

        case 'j' # Joint gramian
            [pr,pm] = pscales(pr,nf(9),size(xm,2));
            V = emgr_oct(f,g,[M,N,Q,P],t,'x',0,nf,ut,us,[xs;pr],um,[xm;pm],dp);
            if(nf(11)) # Partitioned joint gramian
                W = V;
                return;
            endif;
            W{1} = V(1:N,1:N); # Cross gramian
            WM = V(1:N,N+1:N+P);
            if(nf(10))         # Cross-identifiability gramian
                W{2} = -0.5 * (WM' * WM);
            else
                W{2} = -0.5 * (WM' * ainv(W{1} + W{1}') * WM);
            endif;

        otherwise
            error('emgr: unknown gramian type!');
    endswitch;
endfunction

## LOCALFUNCTION: scales
#  summary: Input and initial state perturbation scales
function sm = scales(s,d,c)

    switch(d)

        case 1 # Linear
            sc = [0.25,0.50,0.75,1.0];

        case 2 # Geometric
            sc = [0.125,0.25,0.5,1.0];

        case 3 # Logarithmic
            sc = [0.001,0.01,0.1,1.0];

        case 4 # Sparse
            sc = [0.01,0.5,0.99,1.0];

        otherwise # One
            sc = 1;
    endswitch;

    if(c==0), sc = [-sc,sc]; endif;

    sm = s*sc;
endfunction

## LOCALFUNCTION: pscales
#  summary: Parameter perturbation scales
function [pr,pm] = pscales(p,d,c)

    assert(size(p,2)>1,'emgr: min + max parameter required!');

    pmin = min(p,[],2);
    pmax = max(p,[],2);

    switch(d) # Parameter centering

        case 1 # Linear
            pr = 0.5 * (pmax + pmin);
            pm = (pmax - pmin) * linspace(0,1.0,c);
            pm = pm + (pmin - pr);

        case 2 # Logarithmic
            lmin = log(pmin);
            lmax = log(pmax);
            pr = real(exp(0.5 * (lmax + lmin)));
            pm = (lmax - lmin) * linspace(0,1.0,c);
            pm = pm + lmin;
            pm = real(exp(pm)) + (pmin - pr);

        otherwise # None
            pr = pmin;
            pm = (pmax - pmin)*linspace(0,1.0,c);
    endswitch;
endfunction

## LOCALFUNCTION: avg
#  summary: State and output trajectory centering
function mn = avg(x,d,c)

    switch(d)

        case 1 # Steady state / output
            mn = c;

        case 2 # Final state / output
            mn = x(:,end);

        case 3 # Mean state / output
            mn = mean(x,2);

        case 4 # Root-mean-square state / output
            mn = sqrt(mean(x.*x,2));

        case 5 # Midrange state / output
            mn = 0.5*(max(x,[],2)-min(x,[],2));

        otherwise # None
            mn = zeros(size(x,1),1);
    endswitch;
endfunction

## LOCALFUNCTION: ainv
#  summary: Quadratic complexity approximate inverse matrix
function x = ainv(m)

    d = diag(m);
    d(d~=0) = 1.0./d(d~=0);
    x = m .* (-d);
    x = x .* (d');
    x(1:numel(d)+1:end) = d;
endfunction

## LOCALFUNCTION: ssp2
#  summary: Low-Storage Stability Preserving Runge-Kutta SSP32
function y = ssp2(f,g,t,x0,u,p)

    global STAGES;

    if(isscalar(STAGES)==0), STAGES = 3; endif;

    h = t(1);
    K = floor(t(2)/h) + 1;

    y = g(x0,u(0),p,0);
    y(end,K) = 0; # Pre-allocate trajectory

    hs = h / (STAGES-1);
    xk1 = x0;
    xk2 = x0;

    for k = 2:K
        tk = (k - 1.5) * h;
        uk = u(tk);
        for s = 1:(STAGES-1)
            xk1 += hs * f(xk1,uk,p,tk);
            tk += hs;
        endfor;
        xk1 = ((STAGES-1) * xk1 + xk2 + h * f(xk2,uk,p,tk)) ./ STAGES;
        xk2 = xk1;
        y(:,k) = g(xk1,uk,p,tk);
    endfor;
endfunction
back to top