\name{nBartlett} \alias{nBartlett} \title{ Bartlett, Anderson and Lawley Procedures to Determine the Number of Components/Factors} \description{ This function computes the Bartlett, Anderson and Lawley indices for determining the number of components/factors to retain. } \usage{ nBartlett(x, N, alpha=0.05, cor=TRUE, details=TRUE, correction=TRUE, ...) } \arguments{ \item{x}{ numeric: a \code{vector} of eigenvalues, a \code{matrix} of correlations or of covariances or a \code{data.frame} of data (eigenFrom)} \item{N}{ numeric: number of subjects} \item{alpha}{ numeric: statistical significance level } \item{cor}{ logical: if \code{TRUE} computes eigenvalues from a correlation matrix, else from a covariance matrix} \item{details}{ logical: if \code{TRUE} also returns detains about the computation for each eigenvalue} \item{correction}{ logical: if \code{TRUE} uses a correction for the degree of freedom after the first eigenvalue} \item{...}{ variable: additionnal parameters to give to the \code{cor} or \code{cov} functions} } \details{ The hypothesis tested is: \cr \cr (1) \eqn{\qquad \qquad H_k: \lambda_{k+1} = \ldots = \lambda_p} \cr This hypothesis is verified by the application of different version of a \eqn{\chi^2} test with different values for the degrees of freedom. Each of these tests shares the compution of a \eqn{V_k} value: \cr (2) \eqn{\qquad \qquad V_k = \prod\limits_{i = k + 1}^p {\left\{ {{{\lambda _i } \over {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 q}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$q$}}\sum\limits_{i = k + 1}^p {\lambda _i } }}} \right\}} } \eqn{p} is the number of eigenvalues, \eqn{k} the number of eigenvalues to test, and \eqn{q} the \eqn{p-k} remaining eigenvalues. \eqn{n} is equal to the sample size minus 1 (\eqn{n = N-1}). \cr The Anderson statistic is distributed as a \eqn{\chi^2} with \eqn{(q + 2)(q - 1)/2} degrees of freedom and is equal to: \cr (3) \eqn{\qquad \qquad - n\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 } \cr An improvement of this statistic from Bartlett (Bentler, and Yuan, 1996, p. 300; Horn and Engstrom, 1979, equation 8) is distributed as a \eqn{\chi^2} with \eqn{(q)(q - 1)/2} degrees of freedom and is equal to: \cr (4) \eqn{\qquad \qquad - \left[ {n - k - {{2q^2 q + 2} \over {6q}}} \right]\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 } \cr Finally, Anderson (1956) and James (1969) proposed another statistic. \cr (5) \eqn{\qquad \qquad - \left[ {n - k - {{2q^2 q + 2} \over {6q}} + \sum\limits_{i = 1}^k {{{\bar \lambda _q^2 } \over {\left( {\lambda _i - \bar \lambda _q } \right)^2 }}} } \right]\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 } \cr Bartlett (1950, 1951) proposed a correction to the degrees of freedom of these \eqn{\chi^2} after the first significant test: \eqn{(q+2)(q - 1)/2}. \cr } \value{ \item{nFactors}{ numeric: vector of the number of factors retained by the Bartlett, Anderson and Lawley procedures. } \item{details}{ numeric: matrix of the details for each index.} } \references{ Anderson, T. W. (1963). Asymptotic theory for principal component analysis. \emph{Annals of Mathematical Statistics, 34}, 122-148. Bartlett, M. S. (1950). Tests of significance in factor analysis. \emph{British Journal of Psychology, 3}, 77-85. Bartlett, M. S. (1951). A further note on tests of significance. \emph{British Journal of Psychology, 4}, 1-2. Bentler, P. M. and Yuan, K.-H. (1996). Test of linear trend in eigenvalues of a covariance matrix with application to data analysis. \emph{British Journal of Mathematical and Statistical Psychology, 49}, 299-312. Bentler, P. M. and Yuan, K.-H. (1998). Test of linear trend in the smallest eigenvalues of the correlation matrix. \emph{Psychometrika, 63}(2), 131-144. Horn, J. L. and Engstrom, R. (1979). Cattell's scree test in relation to Bartlett's chi-square test and other observations on the number of factors problem. \emph{Multivariate Behavioral Reasearch, 14}(3), 283-300. James, A. T. (1969). Test of equality of the latent roots of the covariance matrix. \emph{In} P. K. Krishna (Eds): \emph{Multivariate analysis, volume 2}. New-York, NJ: Academic Press. Lawley, D. N. (1956). Tests of significance for the latent roots of covariance and correlation matrix. \emph{Biometrika, 43}(1/2), 128-136. } \author{ Gilles Raiche \cr Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/} } \seealso{ \code{\link{plotuScree}}, \code{\link{nScree}}, \code{\link{plotnScree}}, \code{\link{plotParallel}} } \examples{ ## SIMPLE EXAMPLE OF A BARTLETT PROCEDURE data(dFactors) eig <- dFactors$Raiche$eigenvalues results <- nBartlett(x=eig, N= 100, alpha=0.05, details=TRUE) results plotuScree(eig, main=paste(results$nFactors[1], ", ", results$nFactors[2], " or ", results$nFactors[3], " factors retained by the LRT procedures", sep="")) } \keyword{ multivariate }