# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Class for reading and writing UVH5 files. """ from __future__ import absolute_import, division, print_function import numpy as np import os import warnings import six from . import UVData from . import utils as uvutils try: import h5py except ImportError: # pragma: no cover uvutils._reraise_context('h5py is not installed but is required for ' 'uvh5 functionality') def _read_uvh5_string(dataset, filename): """ Handle backwards compatibility of string types for legacy uvh5 files. Args: dataset: HDF5 dataset containing string-like data filename: name of uvh5 file Returns: string: string of type corresponding to data saved in dataset Notes: This function is only designed to work on scalar datasets. Arrays of strings should be handled differently. (See how antenna_names are handled below for an example.) """ if dataset.dtype.type is np.object_: warnings.warn("Strings in metadata of {file} are not the correct type; rewrite with " "write_uvh5 to ensure future compatibility".format(file=filename)) try: return uvutils._bytes_to_str(dataset.value) except AttributeError: # dataset.value is already type, and doesn't need to be decoded return dataset.value else: return uvutils._bytes_to_str(dataset.value.tostring()) class UVH5(UVData): """ Defines an HDF5-specific subclass of UVData for reading and writing uvh5 files. This class should not be interacted with directly, instead use the read_uvh5 and write_uvh5 methods on the UVData class. """ def _read_header(self, header, filename): """ Internal function to read header information from a UVH5 file. Args: header: reference to an h5py data group that contains the header information. Returns: None """ # get telescope information latitude = header['latitude'].value longitude = header['longitude'].value altitude = header['altitude'].value self.telescope_location_lat_lon_alt = (latitude, longitude, altitude) self.instrument = _read_uvh5_string(header['instrument'], filename) # get source information self.object_name = _read_uvh5_string(header['object_name'], filename) # set history appropriately self.history = _read_uvh5_string(header['history'], filename) if not uvutils._check_history_version(self.history, self.pyuvdata_version_str): self.history += self.pyuvdata_version_str # check for vis_units if 'vis_units' in header: self.vis_units = _read_uvh5_string(header['vis_units'], filename) else: # default to uncalibrated data self.vis_units = 'UNCALIB' # check for optional values if 'dut1' in header: self.dut1 = float(header['dut1'].value) if 'earth_omega' in header: self.earth_omega = float(header['earth_omega'].value) if 'gst0' in header: self.gst0 = float(header['gst0'].value) if 'rdate' in header: self.rdate = _read_uvh5_string(header['rdate'], filename) if 'timesys' in header: self.timesys = _read_uvh5_string(header['timesys'], filename) if 'x_orientation' in header: self.x_orientation = _read_uvh5_string(header['x_orientation'], filename) if 'telescope_name' in header: self.telescope_name = _read_uvh5_string(header['telescope_name'], filename) if 'antenna_positions' in header: self.antenna_positions = header['antenna_positions'].value if 'antenna_diameters' in header: self.antenna_diameters = header['antenna_diameters'].value if 'uvplane_reference_time' in header: self.uvplane_reference_time = int(header['uvplane_reference_time'].value) # check for phasing information self.phase_type = _read_uvh5_string(header['phase_type'], filename) if self.phase_type == 'phased': self.set_phased() self.phase_center_ra = float(header['phase_center_ra'].value) self.phase_center_dec = float(header['phase_center_dec'].value) self.phase_center_epoch = float(header['phase_center_epoch'].value) if 'phase_center_frame' in header: self.phase_center_frame = _read_uvh5_string(header['phase_center_frame'], filename) elif self.phase_type == 'drift': self.set_drift() else: self.set_unknown_phase_type() # get antenna arrays # cast to native python int type self.Nants_data = int(header['Nants_data'].value) self.Nants_telescope = int(header['Nants_telescope'].value) self.ant_1_array = header['ant_1_array'].value self.ant_2_array = header['ant_2_array'].value self.antenna_names = [uvutils._bytes_to_str(n.tostring()) for n in header['antenna_names'].value] self.antenna_numbers = header['antenna_numbers'].value # get baseline array self.baseline_array = self.antnums_to_baseline(self.ant_1_array, self.ant_2_array) self.Nbls = len(np.unique(self.baseline_array)) # get uvw array self.uvw_array = header['uvw_array'].value # get time information self.time_array = header['time_array'].value self.integration_time = header['integration_time'].value if np.array(self.integration_time).size == 1 and int(header['Nblts'].value) > 1: warnings.warn('{file} appears to be an old uvh5 format ' 'with a single valued integration_time which has been deprecated. ' 'Rewrite this file with write_uvh5 to ensure ' 'future compatibility.'.format(file=filename)) self.integration_time = np.ones_like(self.time_array, dtype=np.float64) * self.integration_time if 'lst_array' in header: self.lst_array = header['lst_array'].value # check that lst_array in file is self-consistent latitude, longitude, altitude = self.telescope_location_lat_lon_alt_degrees lst_array = uvutils.get_lst_for_time(self.time_array, latitude, longitude, altitude) if not np.all(np.isclose(self.lst_array, lst_array, rtol=self._lst_array.tols[0], atol=self._lst_array.tols[1])): warnings.warn("LST values stored in {file} are not self-consistent with time_array " "and telescope location. Consider recomputing with " "utils.get_lst_for_time.".format(file=filename)) else: # compute lst_array from time_array and telescope location latitude, longitude, altitude = self.telescope_location_lat_lon_alt_degrees self.lst_array = uvutils.get_lst_for_time(self.time_array, latitude, longitude, altitude) # get frequency information self.freq_array = header['freq_array'].value self.channel_width = float(header['channel_width'].value) self.spw_array = header['spw_array'].value # get polarization information self.polarization_array = header['polarization_array'].value # get data shapes self.Nfreqs = int(header['Nfreqs'].value) self.Npols = int(header['Npols'].value) self.Ntimes = int(header['Ntimes'].value) self.Nblts = int(header['Nblts'].value) self.Nspws = int(header['Nspws'].value) # get extra_keywords if "extra_keywords" in header: self.extra_keywords = {} for key in header["extra_keywords"].keys(): if header["extra_keywords"][key].dtype.type in (np.string_, np.object_): self.extra_keywords[key] = _read_uvh5_string(header["extra_keywords"][key], filename) else: self.extra_keywords[key] = header["extra_keywords"][key].value return def _get_data(self, dgrp, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, polarizations, blt_inds, run_check, check_extra, run_check_acceptability): """ Internal function to read just the visibility, flag, and nsample data of the uvh5 file. Separated from full read so that header/metadata and data can be read independently. """ # figure out what data to read in blt_inds, freq_inds, pol_inds, history_update_string = \ self._select_preprocess(antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, polarizations, blt_inds) if blt_inds is not None: blt_frac = len(blt_inds) / float(self.Nblts) else: blt_frac = 1 if freq_inds is not None: freq_frac = len(freq_inds) / float(self.Nfreqs) else: freq_frac = 1 if pol_inds is not None: pol_frac = len(pol_inds) / float(self.Npols) else: pol_frac = 1 min_frac = np.min([blt_frac, freq_frac, pol_frac]) if min_frac == 1: # no select, read in all the data self.data_array = dgrp['visdata'].value self.flag_array = dgrp['flags'].value self.nsample_array = dgrp['nsamples'].value else: # do select operations on everything except data_array, flag_array and nsample_array self._select_metadata(blt_inds, freq_inds, pol_inds, history_update_string) # open references to datasets visdata_dset = dgrp['visdata'] flags_dset = dgrp['flags'] nsamples_dset = dgrp['nsamples'] # just read in the right portions of the data and flag arrays if blt_frac == min_frac: visdata = visdata_dset[blt_inds, :, :, :] flags = flags_dset[blt_inds, :, :, :] nsamples = nsamples_dset[blt_inds, :, :, :] assert(self.Nspws == visdata.shape[1]) if freq_frac < 1: visdata = visdata[:, :, freq_inds, :] flags = flags[:, :, freq_inds, :] nsamples = nsamples[:, :, freq_inds, :] if pol_frac < 1: visdata = visdata[:, :, :, pol_inds] flags = flags[:, :, :, pol_inds] nsamples = nsamples[:, :, :, pol_inds] elif freq_frac == min_frac: visdata = visdata_dset[:, :, freq_inds, :] flags = flags_dset[:, :, freq_inds, :] nsamples = nsamples_dset[:, :, freq_inds, :] if blt_frac < 1: visdata = visdata[blt_inds, :, :, :] flags = flags[blt_inds, :, :, :] nsamples = nsamples[blt_inds, :, :, :] if pol_frac < 1: visdata = visdata[:, :, :, pol_inds] flags = flags[:, :, :, pol_inds] nsamples = nsamples[:, :, :, pol_inds] else: visdata = visdata_dset[:, :, :, pol_inds] flags = flags_dset[:, :, :, pol_inds] nsamples = nsamples_dset[:, :, :, pol_inds] if blt_frac < 1: visdata = visdata[blt_inds, :, :, :] flags = flags[blt_inds, :, :, :] nsamples = nsamples[blt_inds, :, :, :] if freq_frac < 1: visdata = visdata[:, :, freq_inds, :] flags = flags[:, :, freq_inds, :] nsamples = nsamples[:, :, freq_inds, :] # save arrays in object self.data_array = visdata self.flag_array = flags self.nsample_array = nsamples # check if object has all required UVParameters set if run_check: self.check(check_extra=check_extra, run_check_acceptability=run_check_acceptability) return def read_uvh5(self, filename, antenna_nums=None, antenna_names=None, ant_str=None, bls=None, frequencies=None, freq_chans=None, times=None, polarizations=None, blt_inds=None, read_data=True, run_check=True, check_extra=True, run_check_acceptability=True): """ Read in data from a UVH5 file. Args: filename: The file name to read. antenna_nums: The antennas numbers to include when reading data into the object (antenna positions and names for the excluded antennas will be retained). This cannot be provided if antenna_names is also provided. Ignored if read_data is False. antenna_names: The antennas names to include when reading data into the object (antenna positions and names for the excluded antennas will be retained). This cannot be provided if antenna_nums is also provided. Ignored if read_data is False. bls: A list of antenna number tuples (e.g. [(0,1), (3,2)]) or a list of baseline 3-tuples (e.g. [(0,1,'xx'), (2,3,'yy')]) specifying baselines to keep in the object. For length-2 tuples, the ordering of the numbers within the tuple does not matter. For length-3 tuples, the polarization string is in the order of the two antennas. If length-3 tuples are provided, the polarizations argument below must be None. Ignored if read_data is False. ant_str: A string containing information about what antenna numbers and polarizations to include when reading data into the object. Can be 'auto', 'cross', 'all', or combinations of antenna numbers and polarizations (e.g. '1', '1_2', '1x_2y'). See tutorial for more examples of valid strings and the behavior of different forms for ant_str. If '1x_2y,2y_3y' is passed, both polarizations 'xy' and 'yy' will be kept for both baselines (1,2) and (2,3) to return a valid pyuvdata object. An ant_str cannot be passed in addition to any of the above antenna args or the polarizations arg. Ignored if read_data is False. frequencies: The frequencies to include when reading data into the object. Ignored if read_data is False. freq_chans: The frequency channel numbers to include when reading data into the object. Ignored if read_data is False. times: The times to include when reading data into the object. Ignored if read_data is False. polarizations: The polarizations to include when reading data into the object. Ignored if read_data is False. blt_inds: The baseline-time indices to include when reading data into the object. This is not commonly used. Ignored if read_data is False. read_data: Read in the visibility and flag data. If set to false, only the header info and metadata will be read in. Results in an incompletely defined object (check will not pass). Default True. run_check: Option to check for the existence and proper shapes of parameters after reading in the file. Default is True. check_extra: Option to check optional parameters as well as required ones. Default is True. run_check_acceptability: Option to check acceptable range of the values of parameters after reading in the file. Default is True. Returns: None """ if not os.path.exists(filename): raise IOError(filename + ' not found') if not read_data: run_check = False # open hdf5 file for reading with h5py.File(filename, 'r') as f: # extract header information header = f['/Header'] self._read_header(header, filename) if not read_data: # don't read in the data. This means the object is incomplete, # but that may not matter for many purposes. return # Now read in the data dgrp = f['/Data'] self._get_data(dgrp, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, polarizations, blt_inds, run_check, check_extra, run_check_acceptability) return def _write_header(self, header): """Internal function to write uvh5 header information. """ # write out telescope and source information header['latitude'] = self.telescope_location_lat_lon_alt[0] header['longitude'] = self.telescope_location_lat_lon_alt[1] header['altitude'] = self.telescope_location_lat_lon_alt[2] header['telescope_name'] = np.string_(self.telescope_name) header['instrument'] = np.string_(self.instrument) header['object_name'] = np.string_(self.object_name) # write out required UVParameters header['Nants_data'] = self.Nants_data header['Nants_telescope'] = self.Nants_telescope header['Nbls'] = self.Nbls header['Nblts'] = self.Nblts header['Nfreqs'] = self.Nfreqs header['Npols'] = self.Npols header['Nspws'] = self.Nspws header['Ntimes'] = self.Ntimes header['antenna_numbers'] = self.antenna_numbers header['uvw_array'] = self.uvw_array header['vis_units'] = np.string_(self.vis_units) header['channel_width'] = self.channel_width header['time_array'] = self.time_array header['freq_array'] = self.freq_array header['integration_time'] = self.integration_time header['lst_array'] = self.lst_array header['polarization_array'] = self.polarization_array header['spw_array'] = self.spw_array header['ant_1_array'] = self.ant_1_array header['ant_2_array'] = self.ant_2_array # handle antenna_names if six.PY2: n_names = len(self.antenna_names) max_len_names = np.amax([len(n) for n in self.antenna_names]) dtype = "S{:d}".format(max_len_names) header.create_dataset('antenna_names', (n_names,), dtype=dtype, data=self.antenna_names) else: header['antenna_names'] = np.string_(self.antenna_names) # write out phasing information header['phase_type'] = np.string_(self.phase_type) if self.phase_center_ra is not None: header['phase_center_ra'] = self.phase_center_ra if self.phase_center_dec is not None: header['phase_center_dec'] = self.phase_center_dec if self.phase_center_epoch is not None: header['phase_center_epoch'] = self.phase_center_epoch if self.phase_center_frame is not None: header['phase_center_frame'] = np.string_(self.phase_center_frame) # write out optional parameters if self.antenna_positions is not None: header['antenna_positions'] = self.antenna_positions if self.dut1 is not None: header['dut1'] = self.dut1 if self.earth_omega is not None: header['earth_omega'] = self.earth_omega if self.gst0 is not None: header['gst0'] = self.gst0 if self.rdate is not None: header['rdate'] = np.string_(self.rdate) if self.timesys is not None: header['timesys'] = np.string_(self.timesys) if self.x_orientation is not None: header['x_orientation'] = np.string_(self.x_orientation) if self.antenna_diameters is not None: header['antenna_diameters'] = self.antenna_diameters if self.uvplane_reference_time is not None: header['uvplane_reference_time'] = self.uvplane_reference_time # write out extra keywords if it exists and has elements if self.extra_keywords: extra_keywords = header.create_group("extra_keywords") for k in self.extra_keywords.keys(): if isinstance(self.extra_keywords[k], str): extra_keywords[k] = np.string_(self.extra_keywords[k]) else: extra_keywords[k] = self.extra_keywords[k] # write out history header['history'] = np.string_(self.history) return def write_uvh5(self, filename, run_check=True, check_extra=True, run_check_acceptability=True, clobber=False, data_compression=None, flags_compression="lzf", nsample_compression="lzf"): """ Write an in-memory UVData object to a UVH5 file. Args: filename: The UVH5 file to write to. run_check: Option to check for the existence and proper shapes of parameters before writing the file. Default is True. check_extra: Option to check optional parameters as well as required ones. Default is True. run_check_acceptability: Option to check acceptable range of the values of parameters before writing the file. Default is True. clobber: Option to overwrite the file if it already exists. Default is False. data_compression: HDF5 filter to apply when writing the data_array. Default is None (no filter/compression). flags_compression: HDF5 filter to apply when writing the flags_array. Default is the LZF filter. nsample_compression: HDF5 filter to apply when writing the nsample_array. Default is the LZF filter. Returns: None Notes: The HDF5 library allows for the application of "filters" when writing data, which can provide moderate to significant levels of compression for the datasets in question. Testing has shown that for some typical cases of UVData objects (empty/sparse flag_array objects, and/or uniform nsample_arrays), the built-in LZF filter provides significant compression for minimal computational overhead. Note that for typical HERA data files written after mid-2018, the bitshuffle filter was applied to the data_array. Because of the lack of portability, it is not included as an option here; in the future, it may be added. Note that as long as bitshuffle is installed on the system in a way that h5py can find it, no action needs to be taken to _read_ a data_array encoded with bitshuffle (or an error will be raised). """ if run_check: self.check(check_extra=check_extra, run_check_acceptability=run_check_acceptability) if os.path.exists(filename): if clobber: print("File exists; clobbering") else: raise ValueError("File exists; skipping") # open file for writing with h5py.File(filename, 'w') as f: # write header header = f.create_group("Header") self._write_header(header) # write out data, flags, and nsample arrays dgrp = f.create_group("Data") if data_compression is not None: visdata = dgrp.create_dataset("visdata", chunks=True, data=self.data_array.astype(np.complex64), compression=data_compression) else: visdata = dgrp.create_dataset("visdata", chunks=True, data=self.data_array.astype(np.complex64)) if flags_compression is not None: flags = dgrp.create_dataset("flags", chunks=True, data=self.flag_array, compression=flags_compression) else: flags = dgrp.create_dataset("flags", chunks=True, data=self.flag_array) if nsample_compression is not None: nsample_array = dgrp.create_dataset("nsamples", chunks=True, data=self.nsample_array.astype(np.float32), compression=nsample_compression) else: nsample_array = dgrp.create_dataset("nsamples", chunks=True, data=self.nsample_array.astype(np.float32)) return def initialize_uvh5_file(self, filename, clobber=False, data_compression=None, flags_compression="lzf", nsample_compression="lzf"): """Initialize a UVH5 file on disk to be written to in parts. Args: filename: The UVH5 file to write to. clobber: Option to overwrite the file if it already exists. Default is False. data_compression: HDF5 filter to apply when writing the data_array. Default is None (no filter/compression). flags_compression: HDF5 filter to apply when writing the flags_array. Default is the LZF filter. nsample_compression: HDF5 filter to apply when writing the nsample_array. Default is the LZF filter. Returns: None Notes: When partially writing out data, this function should be called first to initialize the file on disk. The data is then actually written by calling the write_uvh5_part method, with the same filename as the one specified in this function. See the tutorial for a worked example. The HDF5 library allows for the application of "filters" when writing data, which can provide moderate to significant levels of compression for the datasets in question. Testing has shown that for some typical cases of UVData objects (empty/sparse flag_array objects, and/or uniform nsample_arrays), the built-in LZF filter provides significant compression for minimal computational overhead. Note that for typical HERA data files written after mid-2018, the bitshuffle filter was applied to the data_array. Because of the lack of portability, it is not included as an option here; in the future, it may be added. Note that as long as bitshuffle is installed on the system in a way that h5py can find it, no action needs to be taken to _read_ a data_array encoded with bitshuffle (or an error will be raised). """ if os.path.exists(filename): if clobber: print("File exists; clobbering") else: raise ValueError("File exists; skipping") # write header and empty arrays to file with h5py.File(filename, 'w') as f: # write header header = f.create_group("Header") self._write_header(header) # initialize the data groups on disk data_size = (self.Nblts, self.Nspws, self.Nfreqs, self.Npols) dgrp = f.create_group("Data") if data_compression is not None: visdata = dgrp.create_dataset("visdata", data_size, chunks=True, dtype='c8', compression=data_compression) else: visdata = dgrp.create_dataset("visdata", data_size, chunks=True, dtype='c8') if flags_compression is not None: flags = dgrp.create_dataset("flags", data_size, chunks=True, dtype='b1', compression=flags_compression) else: flags = dgrp.create_dataset("flags", data_size, chunks=True, dtype='b1') if nsample_compression is not None: nsample_array = dgrp.create_dataset("nsamples", data_size, chunks=True, dtype='f4', compression=nsample_compression) else: nsample_array = dgrp.create_dataset("nsamples", data_size, chunks=True, dtype='f4') return def _check_header(self, filename): """ Check that the metadata present in a file header matches the object's metadata. Args: header: reference to an h5py data group that contains the header information. Returns: None Notes: This function creates a new UVData object an reads in the header information saved on disk to compare with the object in memory. Note that this adds some small memory overhead, but this amount is typically much smaller than the size of the data. """ uvd_file = UVH5() with h5py.File(filename, 'r') as f: header = f['/Header'] uvd_file._read_header(header, filename) # temporarily remove data, flag, and nsample arrays, so we only check metadata if self.data_array is not None: data_array = self.data_array self.data_array = None replace_data = True else: replace_data = False if self.flag_array is not None: flag_array = self.flag_array self.flag_array = None replace_flags = True else: replace_flags = False if self.nsample_array is not None: nsample_array = self.nsample_array self.nsample_array = None replace_nsamples = True else: replace_nsamples = False if self != uvd_file: raise AssertionError("The object metadata in memory and metadata on disk are different") else: # clean up after ourselves if replace_data: self.data_array = data_array if replace_flags: self.flag_array = flag_array if replace_nsamples: self.nsample_array = nsample_array del uvd_file return def write_uvh5_part(self, filename, data_array, flags_array, nsample_array, check_header=True, antenna_nums=None, antenna_names=None, ant_str=None, bls=None, frequencies=None, freq_chans=None, times=None, polarizations=None, blt_inds=None): """ Write out a part of a UVH5 file that has been previously initialized. Args: filename: the file on disk to write data to. It must already exist, and is assumed to have been initialized with initialize_uvh5_file. data_array: the data to write to disk. A check is done to ensure that the dimensions of the data passed in conform to the ones specified by the "selection" arguments. flags_array: the flags array to write to disk. A check is done to ensure that the dimensions of the data passed in conform to the ones specified by the "selection" arguments. nsample_array: the nsample array to write to disk. A check is done to ensure that the dimensions fo the data passed in conform to the ones specified by the "selection" arguments. check_header: option to check that the metadata present in the header on disk matches that in the object. Default is True. antenna_nums: The antennas numbers to include when writing data into the object (antenna positions and names for the excluded antennas will be retained). This cannot be provided if antenna_names is also provided. antenna_names: The antennas names to include when writing data into the object (antenna positions and names for the excluded antennas will be retained). This cannot be provided if antenna_nums is also provided. bls: A list of antenna number tuples (e.g. [(0,1), (3,2)]) or a list of baseline 3-tuples (e.g. [(0,1,'xx'), (2,3,'yy')]) specifying baselines to write to the file. For length-2 tuples, the ordering of the numbers within the tuple does not matter. For length-3 tuples, the polarization string is in the order of the two antennas. If length-3 tuples are provided, the polarizations argument below must be None. ant_str: A string containing information about what antenna numbers and polarizations to include when writing data into the object. Can be 'auto', 'cross', 'all', or combinations of antenna numbers and polarizations (e.g. '1', '1_2', '1x_2y'). See tutorial for more examples of valid strings and the behavior of different forms for ant_str. If '1x_2y,2y_3y' is passed, both polarizations 'xy' and 'yy' will be written for both baselines (1,2) and (2,3) to reflect a valid pyuvdata object. An ant_str cannot be passed in addition to any of the above antenna args or the polarizations arg. frequencies: The frequencies to include when writing data to the file. freq_chans: The frequency channel numbers to include when writing data to the file. times: The times to include when writing data to the file. polarizations: The polarizations to include when writing data to the file. blt_inds: The baseline-time indices to include when writing data to the file. This is not commonly used. Returns: None Notes: When partially writing out data, this function should be called after calling initialize_uvh5_file. The same filename is passed in, with an optional check to ensure that the object's metadata in-memory matches the header on-disk. See the tutorial for a worked example. """ # check that the file already exists if not os.path.exists(filename): raise AssertionError("{0} does not exists; please first initialize it with initialize_uvh5_file".format( filename)) if check_header: self._check_header(filename) # figure out which "full file" indices to write data to blt_inds, freq_inds, pol_inds, _ = self._select_preprocess( antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, polarizations, blt_inds) # make sure that the dimensions of the data to write are correct if data_array.shape != flags_array.shape: raise AssertionError("data_array and flags_array must have the same shape") if data_array.shape != nsample_array.shape: raise AssertionError("data_array and nsample_array must have the same shape") # check what part of each dimension to grab # we can use numpy slice objects to index the h5py indices if blt_inds is not None: Nblts = len(blt_inds) # test if blts are regularly spaced if len(set(np.ediff1d(blt_inds))) <= 1: blt_reg_spaced = True blt_start = blt_inds[0] blt_end = blt_inds[-1] + 1 if len(blt_inds) == 1: d_blt = 1 else: d_blt = blt_inds[1] - blt_inds[0] blt_inds = np.s_[blt_start:blt_end:d_blt] else: blt_reg_spaced = False else: Nblts = self.Nblts blt_reg_spaced = True blt_inds = np.s_[:] if freq_inds is not None: Nfreqs = len(freq_inds) # test if frequencies are regularly spaced if len(set(np.ediff1d(freq_inds))) <= 1: freq_reg_spaced = True freq_start = freq_inds[0] freq_end = freq_inds[-1] + 1 if len(freq_inds) == 1: d_freq = 1 else: d_freq = freq_inds[1] - freq_inds[0] freq_inds = np.s_[freq_start:freq_end:d_freq] else: freq_reg_spaced = False else: Nfreqs = self.Nfreqs freq_reg_spaced = True freq_inds = np.s_[:] if pol_inds is not None: Npols = len(pol_inds) # test if pols are regularly spaced if len(set(np.ediff1d(pol_inds))) <= 1: pol_reg_spaced = True pol_start = pol_inds[0] pol_end = pol_inds[-1] + 1 if len(pol_inds) == 1: d_pol = 1 else: d_pol = pol_inds[1] - pol_inds[0] pol_inds = np.s_[pol_start:pol_end:d_pol] else: pol_reg_spaced = False else: Npols = self.Npols pol_reg_spaced = True pol_inds = np.s_[:] # check for proper size of input arrays proper_shape = (Nblts, 1, Nfreqs, Npols) if data_array.shape != proper_shape: raise AssertionError("data_array has shape {0}; was expecting {1}".format(data_array.shape, proper_shape)) # actually write the data with h5py.File(filename, 'r+') as f: dgrp = f['/Data'] visdata_dset = dgrp['visdata'] flags_dset = dgrp['flags'] nsamples_dset = dgrp['nsamples'] # check if we can do fancy indexing # as long as at least 2 out of 3 axes can be written as slices, we can be fancy n_reg_spaced = np.count_nonzero([blt_reg_spaced, freq_reg_spaced, pol_reg_spaced]) if n_reg_spaced >= 2: visdata_dset[blt_inds, :, freq_inds, pol_inds] = data_array flags_dset[blt_inds, :, freq_inds, pol_inds] = flags_array nsamples_dset[blt_inds, :, freq_inds, pol_inds] = nsample_array elif n_reg_spaced == 1: # figure out which axis is regularly spaced if blt_reg_spaced: for ifreq, freq_idx in enumerate(freq_inds): for ipol, pol_idx in enumerate(pol_inds): visdata_dset[blt_inds, :, freq_idx, pol_idx] = data_array[:, :, ifreq, ipol] flags_dset[blt_inds, :, freq_idx, pol_idx] = flags_array[:, :, ifreq, ipol] nsamples_dset[blt_inds, :, freq_idx, pol_idx] = nsample_array[:, :, ifreq, ipol] elif freq_reg_spaced: for iblt, blt_idx in enumerate(blt_inds): for ipol, pol_idx in enumerate(pol_inds): visdata_dset[blt_idx, :, freq_inds, pol_idx] = data_array[iblt, :, :, ipol] flags_dset[blt_idx, :, freq_inds, pol_idx] = flags_array[iblt, :, :, ipol] nsamples_dset[blt_idx, :, freq_inds, pol_idx] = nsample_array[iblt, :, :, ipol] else: # pol_reg_spaced for iblt, blt_idx in enumerate(blt_inds): for ifreq, freq_idx in enumerate(freq_inds): visdata_dset[blt_idx, :, freq_idx, pol_inds] = data_array[iblt, :, ifreq, :] flags_dset[blt_idx, :, freq_idx, pol_inds] = flags_array[iblt, :, ifreq, :] nsamples_dset[blt_idx, :, freq_idx, pol_inds] = nsample_array[iblt, :, ifreq, :] else: # all axes irregularly spaced # perform a triple loop -- probably very slow! for iblt, blt_idx in enumerate(blt_inds): for ifreq, freq_idx in enumerate(freq_inds): for ipol, pol_idx in enumerate(pol_inds): visdata_dset[blt_idx, :, freq_idx, pol_idx] = data_array[iblt, :, ifreq, ipol] flags_dset[blt_idx, :, freq_idx, pol_idx] = flags_array[iblt, :, ifreq, ipol] nsamples_dset[blt_idx, :, freq_idx, pol_idx] = nsample_array[iblt, :, ifreq, ipol] return