\name{RMmultiquad} \alias{RMmultiquad} \alias{Poisson spline} \alias{Inverse multiquadric} \alias{multiquadric family} \title{The Multiquadric Family Covariance Model on the Sphere} \description{ \command{\link{RMmultiquad}} is an isotropic covariance model. The corresponding covariance function, the multiquadric family, only depends on the angle \eqn{\theta \in [0,\pi]}{0 \le \theta \le \pi} between two points on the sphere and is given by \deqn{\psi(\theta) = (1 - \delta)^{2*\tau} / (1 + delta^2 - 2*\delta*cos(\theta))^{\tau}}{\psi(\theta) = (1 - \delta)^{2*\tau} / (1 + delta^2 - 2*\delta*cos(\theta))^{\tau},} where \eqn{\delta \in (0,1)}{0 < \delta < 1} and \eqn{\tau > 0}{\tau > 0}. } \usage{ RMmultiquad(delta, tau, var, scale, Aniso, proj) } \arguments{ \item{delta}{a numerical value in \eqn{(0,1)}} \item{tau}{a numerical value greater than \eqn{0}} \item{var,scale,Aniso,proj}{optional arguments; same meaning for any \command{\link{RMmodel}}. If not passed, the above covariance function remains unmodified.} } \details{ Special cases (cf. Gneiting, T. (2013), p.1333) are known for fixed parameter \eqn{\tau=0.5}{\tau=0.5} which leads to the covariance function called 'inverse multiquadric'\deqn{\psi(\theta) = (1 - \delta) / \sqrt( 1 + delta^2 - 2*\delta*cos(\theta) )}{\psi(\theta) = (1 - \delta) / \sqrt( 1 + delta^2 - 2*\delta*cos(\theta) )} and for fixed parameter \eqn{\tau=1.5}{\tau=1.5} which gives the covariance function called 'Poisson spline' \deqn{\psi(\theta) = (1 - \delta)^{3} / (1 + delta^2 - 2*\delta*cos(\theta))^{1.5}}{\psi(\theta) = (1 - \delta)^{3} / (1 + delta^2 - 2*\delta*cos(\theta))^{1.5}.} For a more general form, see \command{\link{RMchoquet}}. } \value{ \command{\link{RMmultiquad}} returns an object of class \command{\link[=RMmodel-class]{RMmodel}}. } \references{ Gneiting, T. (2013) \emph{Strictly and non-strictly positive definite functions on spheres} \emph{Bernoulli}, \bold{19}(4), 1327-1349. } \author{Christoph Berreth, \martin} \seealso{ \command{\link{RMmodel}}, \command{\link{RFsimulate}}, \command{\link{RFfit}}, \command{\link{RMchoquet}}, \command{\link{spherical models}} } \keyword{spatial} \keyword{models} \examples{\dontshow{StartExample()} RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again RFoptions(coord_system="sphere") model <- RMmultiquad(delta=0.5, tau=1) plot(model, dim=2) ## the following two pictures are the same %nicht mehr als 0.12 da inversen der cov matrizen sich dann stark unterscheiden x <- seq(0, 0.12, 0.01) z1 <- RFsimulate(model, x=x, y=x) plot(z1) x2 <- x * 180 / pi z2 <- RFsimulate(model, x=x2, y=x2, coord_system="earth") plot(z2) stopifnot(all.equal(as.array(z1), as.array(z2))) RFoptions(coord_system="auto") \dontshow{FinalizeExample()}}