# This file is a part of Julia. License is MIT: https://julialang.org/license ## integer arithmetic ## # The tuples and types that do not include 128 bit sizes are necessary to handle # certain issues on 32-bit machines, and also to simplify promotion rules, as # they are also used elsewhere where Int128/UInt128 support is separated out, # such as in hashing2.jl const BitSigned32_types = (Int8, Int16, Int32) const BitUnsigned32_types = (UInt8, UInt16, UInt32) const BitInteger32_types = (BitSigned32_types..., BitUnsigned32_types...) const BitSigned64_types = (BitSigned32_types..., Int64) const BitUnsigned64_types = (BitUnsigned32_types..., UInt64) const BitInteger64_types = (BitSigned64_types..., BitUnsigned64_types...) const BitSigned_types = (BitSigned64_types..., Int128) const BitUnsigned_types = (BitUnsigned64_types..., UInt128) const BitInteger_types = (BitSigned_types..., BitUnsigned_types...) const BitSignedSmall_types = Int === Int64 ? ( Int8, Int16, Int32) : ( Int8, Int16) const BitUnsignedSmall_types = Int === Int64 ? (UInt8, UInt16, UInt32) : (UInt8, UInt16) const BitIntegerSmall_types = (BitSignedSmall_types..., BitUnsignedSmall_types...) const BitSigned32 = Union{BitSigned32_types...} const BitUnsigned32 = Union{BitUnsigned32_types...} const BitInteger32 = Union{BitInteger32_types...} const BitSigned64 = Union{BitSigned64_types...} const BitUnsigned64 = Union{BitUnsigned64_types...} const BitInteger64 = Union{BitInteger64_types...} const BitSigned = Union{BitSigned_types...} const BitUnsigned = Union{BitUnsigned_types...} const BitInteger = Union{BitInteger_types...} const BitSignedSmall = Union{BitSignedSmall_types...} const BitUnsignedSmall = Union{BitUnsignedSmall_types...} const BitIntegerSmall = Union{BitIntegerSmall_types...} const BitSigned64T = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}} const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}} const BitIntegerType = Union{map(T->Type{T}, BitInteger_types)...} # >> this use of `unsigned` is defined somewhere else << the docstring should migrate there """ unsigned(T::Integer) Convert an integer bitstype to the unsigned type of the same size. # Examples ```jldoctest julia> unsigned(Int16) UInt16 julia> unsigned(UInt64) UInt64 ``` """ unsigned """ signed(T::Integer) Convert an integer bitstype to the signed type of the same size. # Examples ```jldoctest julia> signed(UInt16) Int16 julia> signed(UInt64) Int64 ``` """ signed(::Type{Bool}) = Int signed(::Type{UInt8}) = Int8 signed(::Type{UInt16}) = Int16 signed(::Type{UInt32}) = Int32 signed(::Type{UInt64}) = Int64 signed(::Type{UInt128}) = Int128 signed(::Type{T}) where {T<:Signed} = T ## integer comparisons ## (<)(x::T, y::T) where {T<:BitSigned} = slt_int(x, y) (-)(x::BitInteger) = neg_int(x) (-)(x::T, y::T) where {T<:BitInteger} = sub_int(x, y) (+)(x::T, y::T) where {T<:BitInteger} = add_int(x, y) (*)(x::T, y::T) where {T<:BitInteger} = mul_int(x, y) negate(x) = -x negate(x::Unsigned) = -convert(Signed, x) #widenegate(x) = -convert(widen(signed(typeof(x))), x) inv(x::Integer) = float(one(x)) / float(x) (/)(x::T, y::T) where {T<:Integer} = float(x) / float(y) # skip promotion for system integer types (/)(x::BitInteger, y::BitInteger) = float(x) / float(y) """ isodd(x::Number) -> Bool Return `true` if `x` is an odd integer (that is, an integer not divisible by 2), and `false` otherwise. !!! compat "Julia 1.7" Non-`Integer` arguments require Julia 1.7 or later. # Examples ```jldoctest julia> isodd(9) true julia> isodd(10) false ``` """ isodd(n::Number) = isreal(n) && isodd(real(n)) isodd(n::Real) = isinteger(n) && !iszero(rem(Integer(n), 2)) """ iseven(x::Number) -> Bool Return `true` if `x` is an even integer (that is, an integer divisible by 2), and `false` otherwise. !!! compat "Julia 1.7" Non-`Integer` arguments require Julia 1.7 or later. # Examples ```jldoctest julia> iseven(9) false julia> iseven(10) true ``` """ iseven(n::Number) = isreal(n) && iseven(real(n)) iseven(n::Real) = isinteger(n) && iszero(rem(Integer(n), 2)) signbit(x::Integer) = x < 0 signbit(x::Unsigned) = false flipsign(x::T, y::T) where {T<:BitSigned} = flipsign_int(x, y) flipsign(x::BitSigned, y::BitSigned) = flipsign_int(promote(x, y)...) % typeof(x) flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y)) flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y)) flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y)) flipsign(x::Signed, y::Real) = flipsign(x, -oftype(x, signbit(y))) copysign(x::Signed, y::Signed) = flipsign(x, x ⊻ y) copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y)) copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y)) copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y)) copysign(x::Signed, y::Real) = copysign(x, -oftype(x, signbit(y))) """ abs(x) The absolute value of `x`. When `abs` is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when `abs` is applied to the minimum representable value of a signed integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`, not `-x` as might be expected. See also: [`abs2`](@ref), [`unsigned`](@ref), [`sign`](@ref). # Examples ```jldoctest julia> abs(-3) 3 julia> abs(1 + im) 1.4142135623730951 julia> abs(typemin(Int64)) -9223372036854775808 ``` """ function abs end abs(x::Unsigned) = x abs(x::Signed) = flipsign(x,x) ~(n::Integer) = -n-1 """ unsigned(x) Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as unsigned without checking for negative values. See also: [`signed`](@ref), [`sign`](@ref), [`signbit`](@ref). # Examples ```jldoctest julia> unsigned(-2) 0xfffffffffffffffe julia> unsigned(2) 0x0000000000000002 julia> signed(unsigned(-2)) -2 ``` """ unsigned(x) = x % typeof(convert(Unsigned, zero(x))) unsigned(x::BitSigned) = reinterpret(typeof(convert(Unsigned, zero(x))), x) """ signed(x) Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow. See also: [`unsigned`](@ref), [`sign`](@ref), [`signbit`](@ref). """ signed(x) = x % typeof(convert(Signed, zero(x))) signed(x::BitUnsigned) = reinterpret(typeof(convert(Signed, zero(x))), x) div(x::BitSigned, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x) div(x::Unsigned, y::BitSigned) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y)) rem(x::BitSigned, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x) rem(x::Unsigned, y::BitSigned) = rem(x, unsigned(abs(y))) function divrem(x::BitSigned, y::Unsigned) q, r = divrem(unsigned(abs(x)), y) flipsign(signed(q), x), flipsign(signed(r), x) end function divrem(x::Unsigned, y::BitSigned) q, r = divrem(x, unsigned(abs(y))) unsigned(flipsign(signed(q), y)), r end """ mod(x, y) rem(x, y, RoundDown) The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored division by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding. The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some exceptions, see note below). !!! note When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to `y`, then it may be rounded to `y`. See also: [`rem`](@ref), [`div`](@ref), [`fld`](@ref), [`mod1`](@ref), [`invmod`](@ref). ```jldoctest julia> mod(8, 3) 2 julia> mod(9, 3) 0 julia> mod(8.9, 3) 2.9000000000000004 julia> mod(eps(), 3) 2.220446049250313e-16 julia> mod(-eps(), 3) 3.0 julia> mod.(-5:5, 3)' 1×11 adjoint(::Vector{Int64}) with eltype Int64: 1 2 0 1 2 0 1 2 0 1 2 ``` """ function mod(x::T, y::T) where T<:Integer y == -1 && return T(0) # avoid potential overflow in fld return x - fld(x, y) * y end mod(x::BitSigned, y::Unsigned) = rem(y + unsigned(rem(x, y)), y) mod(x::Unsigned, y::Signed) = rem(y + signed(rem(x, y)), y) mod(x::T, y::T) where {T<:Unsigned} = rem(x, y) # Don't promote integers for div/rem/mod since there is no danger of overflow, # while there is a substantial performance penalty to 64-bit promotion. div(x::T, y::T) where {T<:BitSigned64} = checked_sdiv_int(x, y) rem(x::T, y::T) where {T<:BitSigned64} = checked_srem_int(x, y) div(x::T, y::T) where {T<:BitUnsigned64} = checked_udiv_int(x, y) rem(x::T, y::T) where {T<:BitUnsigned64} = checked_urem_int(x, y) ## integer bitwise operations ## """ ~(x) Bitwise not. See also: [`!`](@ref), [`&`](@ref), [`|`](@ref). # Examples ```jldoctest julia> ~4 -5 julia> ~10 -11 julia> ~true false ``` """ (~)(x::BitInteger) = not_int(x) """ x & y Bitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if one operand is `missing` and the other is `true`. Add parentheses for function application form: `(&)(x, y)`. See also: [`|`](@ref), [`xor`](@ref), [`&&`](@ref). # Examples ```jldoctest julia> 4 & 10 0 julia> 4 & 12 4 julia> true & missing missing julia> false & missing false ``` """ (&)(x::T, y::T) where {T<:BitInteger} = and_int(x, y) """ x | y Bitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if one operand is `missing` and the other is `false`. See also: [`&`](@ref), [`xor`](@ref), [`||`](@ref). # Examples ```jldoctest julia> 4 | 10 14 julia> 4 | 1 5 julia> true | missing true julia> false | missing missing ``` """ (|)(x::T, y::T) where {T<:BitInteger} = or_int(x, y) xor(x::T, y::T) where {T<:BitInteger} = xor_int(x, y) """ bswap(n) Reverse the byte order of `n`. (See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.) # Examples ```jldoctest julia> a = bswap(0x10203040) 0x40302010 julia> bswap(a) 0x10203040 julia> string(1, base = 2) "1" julia> string(bswap(1), base = 2) "100000000000000000000000000000000000000000000000000000000" ``` """ bswap(x::Union{Int8, UInt8}) = x bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) = bswap_int(x) """ count_ones(x::Integer) -> Integer Number of ones in the binary representation of `x`. # Examples ```jldoctest julia> count_ones(7) 3 julia> count_ones(Int32(-1)) 32 ``` """ count_ones(x::BitInteger) = (ctpop_int(x) % Int)::Int """ leading_zeros(x::Integer) -> Integer Number of zeros leading the binary representation of `x`. # Examples ```jldoctest julia> leading_zeros(Int32(1)) 31 ``` """ leading_zeros(x::BitInteger) = (ctlz_int(x) % Int)::Int """ trailing_zeros(x::Integer) -> Integer Number of zeros trailing the binary representation of `x`. # Examples ```jldoctest julia> trailing_zeros(2) 1 ``` """ trailing_zeros(x::BitInteger) = (cttz_int(x) % Int)::Int """ count_zeros(x::Integer) -> Integer Number of zeros in the binary representation of `x`. # Examples ```jldoctest julia> count_zeros(Int32(2 ^ 16 - 1)) 16 julia> count_zeros(-1) 0 ``` """ count_zeros(x::Integer) = count_ones(~x) """ leading_ones(x::Integer) -> Integer Number of ones leading the binary representation of `x`. # Examples ```jldoctest julia> leading_ones(UInt32(2 ^ 32 - 2)) 31 ``` """ leading_ones(x::Integer) = leading_zeros(~x) """ trailing_ones(x::Integer) -> Integer Number of ones trailing the binary representation of `x`. # Examples ```jldoctest julia> trailing_ones(3) 2 ``` """ trailing_ones(x::Integer) = trailing_zeros(~x) ## integer comparisons ## (< )(x::T, y::T) where {T<:BitUnsigned} = ult_int(x, y) (<=)(x::T, y::T) where {T<:BitSigned} = sle_int(x, y) (<=)(x::T, y::T) where {T<:BitUnsigned} = ule_int(x, y) ==(x::BitSigned, y::BitUnsigned) = (x >= 0) & (unsigned(x) == y) ==(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x == unsigned(y)) <( x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) < y) <( x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x < unsigned(y)) <=(x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) <= y) <=(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x <= unsigned(y)) ## integer shifts ## # unsigned shift counts always shift in the same direction >>(x::BitSigned, y::BitUnsigned) = ashr_int(x, y) >>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y) <<(x::BitInteger, y::BitUnsigned) = shl_int(x, y) >>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y) # signed shift counts can shift in either direction # note: this early during bootstrap, `>=` is not yet available # note: we only define Int shift counts here; the generic case is handled later >>(x::BitInteger, y::Int) = ifelse(0 <= y, x >> unsigned(y), x << unsigned(-y)) <<(x::BitInteger, y::Int) = ifelse(0 <= y, x << unsigned(y), x >> unsigned(-y)) >>>(x::BitInteger, y::Int) = ifelse(0 <= y, x >>> unsigned(y), x << unsigned(-y)) for to in BitInteger_types, from in (BitInteger_types..., Bool) if !(to === from) if to.size < from.size @eval rem(x::($from), ::Type{$to}) = trunc_int($to, x) elseif from === Bool @eval rem(x::($from), ::Type{$to}) = convert($to, x) elseif from.size < to.size if from <: Signed @eval rem(x::($from), ::Type{$to}) = sext_int($to, x) else @eval rem(x::($from), ::Type{$to}) = convert($to, x) end else @eval rem(x::($from), ::Type{$to}) = bitcast($to, x) end end end ## integer bitwise rotations ## """ bitrotate(x::Base.BitInteger, k::Integer) `bitrotate(x, k)` implements bitwise rotation. It returns the value of `x` with its bits rotated left `k` times. A negative value of `k` will rotate to the right instead. !!! compat "Julia 1.5" This function requires Julia 1.5 or later. See also: [`<<`](@ref), [`circshift`](@ref), [`BitArray`](@ref). ```jldoctest julia> bitrotate(UInt8(114), 2) 0xc9 julia> bitstring(bitrotate(0b01110010, 2)) "11001001" julia> bitstring(bitrotate(0b01110010, -2)) "10011100" julia> bitstring(bitrotate(0b01110010, 8)) "01110010" ``` """ bitrotate(x::T, k::Integer) where {T <: BitInteger} = (x << ((sizeof(T) << 3 - 1) & k)) | (x >>> ((sizeof(T) << 3 - 1) & -k)) # @doc isn't available when running in Core at this point. # Tuple syntax for documentation two function signatures at the same time # doesn't work either at this point. if nameof(@__MODULE__) === :Base for fname in (:mod, :rem) @eval @doc """ rem(x::Integer, T::Type{<:Integer}) -> T mod(x::Integer, T::Type{<:Integer}) -> T %(x::Integer, T::Type{<:Integer}) -> T Find `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable in `T`, and `y` is an integer in `[typemin(T),typemax(T)]`. If `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to a conversion to `T`. # Examples ```jldoctest julia> 129 % Int8 -127 ``` """ $fname(x::Integer, T::Type{<:Integer}) end end rem(x::T, ::Type{T}) where {T<:Integer} = x rem(x::Signed, ::Type{Unsigned}) = x % unsigned(typeof(x)) rem(x::Unsigned, ::Type{Signed}) = x % signed(typeof(x)) rem(x::Integer, T::Type{<:Integer}) = convert(T, x) # `x % T` falls back to `convert` rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0) mod(x::Integer, ::Type{T}) where {T<:Integer} = rem(x, T) unsafe_trunc(::Type{T}, x::Integer) where {T<:Integer} = rem(x, T) """ trunc([T,] x) trunc(x; digits::Integer= [, base = 10]) trunc(x; sigdigits::Integer= [, base = 10]) `trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value is less than or equal to the absolute value of `x`. `trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not representable. Keywords `digits`, `sigdigits` and `base` work as for [`round`](@ref). See also: [`%`](@ref rem), [`floor`](@ref), [`unsigned`](@ref), [`unsafe_trunc`](@ref). # Examples ```jldoctest julia> trunc(2.22) 2.0 julia> trunc(-2.22, digits=1) -2.2 julia> trunc(Int, -2.22) -2 ``` """ function trunc end """ floor([T,] x) floor(x; digits::Integer= [, base = 10]) floor(x; sigdigits::Integer= [, base = 10]) `floor(x)` returns the nearest integral value of the same type as `x` that is less than or equal to `x`. `floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not representable. Keywords `digits`, `sigdigits` and `base` work as for [`round`](@ref). """ function floor end """ ceil([T,] x) ceil(x; digits::Integer= [, base = 10]) ceil(x; sigdigits::Integer= [, base = 10]) `ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or equal to `x`. `ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not representable. Keywords `digits`, `sigdigits` and `base` work as for [`round`](@ref). """ function ceil end round(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x) trunc(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x) floor(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x) ceil(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x) ## integer construction ## """ @int128_str str @int128_str(str) `@int128_str` parses a string into a Int128. Throws an `ArgumentError` if the string is not a valid integer. """ macro int128_str(s) return parse(Int128, s) end """ @uint128_str str @uint128_str(str) `@uint128_str` parses a string into a UInt128. Throws an `ArgumentError` if the string is not a valid integer. """ macro uint128_str(s) return parse(UInt128, s) end """ @big_str str @big_str(str) Parse a string into a [`BigInt`](@ref) or [`BigFloat`](@ref), and throw an `ArgumentError` if the string is not a valid number. For integers `_` is allowed in the string as a separator. # Examples ```jldoctest julia> big"123_456" 123456 julia> big"7891.5" 7891.5 ``` """ macro big_str(s) message = "invalid number format $s for BigInt or BigFloat" throw_error = :(throw(ArgumentError($message))) if '_' in s # remove _ in s[2:end-1] bf = IOBuffer(maxsize=lastindex(s)) c = s[1] print(bf, c) is_prev_underscore = (c == '_') is_prev_dot = (c == '.') for c in SubString(s, 2, lastindex(s)-1) c != '_' && print(bf, c) c == '_' && is_prev_dot && return throw_error c == '.' && is_prev_underscore && return throw_error is_prev_underscore = (c == '_') is_prev_dot = (c == '.') end print(bf, s[end]) s = String(take!(bf)) end n = tryparse(BigInt, s) n === nothing || return n n = tryparse(BigFloat, s) n === nothing || return n return throw_error end ## integer promotions ## # with different sizes, promote to larger type promote_rule(::Type{Int16}, ::Union{Type{Int8}, Type{UInt8}}) = Int16 promote_rule(::Type{Int32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = Int32 promote_rule(::Type{Int64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = Int64 promote_rule(::Type{Int128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = Int128 promote_rule(::Type{UInt16}, ::Union{Type{Int8}, Type{UInt8}}) = UInt16 promote_rule(::Type{UInt32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = UInt32 promote_rule(::Type{UInt64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = UInt64 promote_rule(::Type{UInt128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = UInt128 # with mixed signedness and same size, Unsigned wins promote_rule(::Type{UInt8}, ::Type{Int8} ) = UInt8 promote_rule(::Type{UInt16}, ::Type{Int16} ) = UInt16 promote_rule(::Type{UInt32}, ::Type{Int32} ) = UInt32 promote_rule(::Type{UInt64}, ::Type{Int64} ) = UInt64 promote_rule(::Type{UInt128}, ::Type{Int128}) = UInt128 ## traits ## """ typemin(T) The lowest value representable by the given (real) numeric DataType `T`. # Examples ```jldoctest julia> typemin(Float16) -Inf16 julia> typemin(Float32) -Inf32 ``` """ function typemin end """ typemax(T) The highest value representable by the given (real) numeric `DataType`. See also: [`floatmax`](@ref), [`typemin`](@ref), [`eps`](@ref). # Examples ```jldoctest julia> typemax(Int8) 127 julia> typemax(UInt32) 0xffffffff julia> typemax(Float64) Inf julia> floatmax(Float32) # largest finite floating point number 3.4028235f38 ``` """ function typemax end typemin(::Type{Int8 }) = Int8(-128) typemax(::Type{Int8 }) = Int8(127) typemin(::Type{UInt8 }) = UInt8(0) typemax(::Type{UInt8 }) = UInt8(255) typemin(::Type{Int16 }) = Int16(-32768) typemax(::Type{Int16 }) = Int16(32767) typemin(::Type{UInt16}) = UInt16(0) typemax(::Type{UInt16}) = UInt16(65535) typemin(::Type{Int32 }) = Int32(-2147483648) typemax(::Type{Int32 }) = Int32(2147483647) typemin(::Type{UInt32}) = UInt32(0) typemax(::Type{UInt32}) = UInt32(4294967295) typemin(::Type{Int64 }) = -9223372036854775808 typemax(::Type{Int64 }) = 9223372036854775807 typemin(::Type{UInt64}) = UInt64(0) typemax(::Type{UInt64}) = 0xffffffffffffffff @eval typemin(::Type{UInt128}) = $(convert(UInt128, 0)) @eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1))) @eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127) @eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1)) widen(::Type{Int8}) = Int16 widen(::Type{Int16}) = Int32 widen(::Type{Int32}) = Int64 widen(::Type{Int64}) = Int128 widen(::Type{UInt8}) = UInt16 widen(::Type{UInt16}) = UInt32 widen(::Type{UInt32}) = UInt64 widen(::Type{UInt64}) = UInt128 # a few special cases, # Int64*UInt64 => Int128 # |x|<=2^(k-1), |y|<=2^k-1 => |x*y|<=2^(2k-1)-1 widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y)) widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y) # multplication by Bool doesn't require widening widemul(x::Bool,y::Bool) = x * y widemul(x::Bool,y::Number) = x * y widemul(x::Number,y::Bool) = x * y ## wide multiplication, Int128 multiply and divide ## if Core.sizeof(Int) == 4 function widemul(u::Int64, v::Int64) local u0::UInt64, v0::UInt64, w0::UInt64 local u1::Int64, v1::Int64, w1::UInt64, w2::Int64, t::UInt64 u0 = u & 0xffffffff; u1 = u >> 32 v0 = v & 0xffffffff; v1 = v >> 32 w0 = u0 * v0 t = reinterpret(UInt64, u1) * v0 + (w0 >>> 32) w2 = reinterpret(Int64, t) >> 32 w1 = u0 * reinterpret(UInt64, v1) + (t & 0xffffffff) hi = u1 * v1 + w2 + (reinterpret(Int64, w1) >> 32) lo = w0 & 0xffffffff + (w1 << 32) return Int128(hi) << 64 + Int128(lo) end function widemul(u::UInt64, v::UInt64) local u0::UInt64, v0::UInt64, w0::UInt64 local u1::UInt64, v1::UInt64, w1::UInt64, w2::UInt64, t::UInt64 u0 = u & 0xffffffff; u1 = u >>> 32 v0 = v & 0xffffffff; v1 = v >>> 32 w0 = u0 * v0 t = u1 * v0 + (w0 >>> 32) w2 = t >>> 32 w1 = u0 * v1 + (t & 0xffffffff) hi = u1 * v1 + w2 + (w1 >>> 32) lo = w0 & 0xffffffff + (w1 << 32) return UInt128(hi) << 64 + UInt128(lo) end function *(u::Int128, v::Int128) u0 = u % UInt64; u1 = Int64(u >> 64) v0 = v % UInt64; v1 = Int64(v >> 64) lolo = widemul(u0, v0) lohi = widemul(reinterpret(Int64, u0), v1) hilo = widemul(u1, reinterpret(Int64, v0)) t = reinterpret(UInt128, hilo) + (lolo >>> 64) w1 = reinterpret(UInt128, lohi) + (t & 0xffffffffffffffff) return Int128(lolo & 0xffffffffffffffff) + reinterpret(Int128, w1) << 64 end function *(u::UInt128, v::UInt128) u0 = u % UInt64; u1 = UInt64(u>>>64) v0 = v % UInt64; v1 = UInt64(v>>>64) lolo = widemul(u0, v0) lohi = widemul(u0, v1) hilo = widemul(u1, v0) t = hilo + (lolo >>> 64) w1 = lohi + (t & 0xffffffffffffffff) return (lolo & 0xffffffffffffffff) + UInt128(w1) << 64 end function _setbit(x::UInt128, i) # faster version of `return x | (UInt128(1) << i)` j = i >> 5 y = UInt128(one(UInt32) << (i & 0x1f)) if j == 0 return x | y elseif j == 1 return x | (y << 32) elseif j == 2 return x | (y << 64) elseif j == 3 return x | (y << 96) end return x end function divrem(x::UInt128, y::UInt128) iszero(y) && throw(DivideError()) if (x >> 64) % UInt64 == 0 if (y >> 64) % UInt64 == 0 # fast path: upper 64 bits are zero, so we can fallback to UInt64 division q64, x64 = divrem(x % UInt64, y % UInt64) return UInt128(q64), UInt128(x64) else # this implies y>x, so return zero(UInt128), x end end n = leading_zeros(y) - leading_zeros(x) q = zero(UInt128) ys = y << n while n >= 0 # ys == y * 2^n if ys <= x x -= ys q = _setbit(q, n) if (x >> 64) % UInt64 == 0 # exit early, similar to above fast path if (y >> 64) % UInt64 == 0 q64, x64 = divrem(x % UInt64, y % UInt64) q |= q64 x = UInt128(x64) end return q, x end end ys >>>= 1 n -= 1 end return q, x end function div(x::Int128, y::Int128) (x == typemin(Int128)) & (y == -1) && throw(DivideError()) return Int128(div(BigInt(x), BigInt(y)))::Int128 end div(x::UInt128, y::UInt128) = divrem(x, y)[1] function rem(x::Int128, y::Int128) return Int128(rem(BigInt(x), BigInt(y)))::Int128 end function rem(x::UInt128, y::UInt128) iszero(y) && throw(DivideError()) if (x >> 64) % UInt64 == 0 if (y >> 64) % UInt64 == 0 # fast path: upper 64 bits are zero, so we can fallback to UInt64 division return UInt128(rem(x % UInt64, y % UInt64)) else # this implies y>x, so return x end end n = leading_zeros(y) - leading_zeros(x) ys = y << n while n >= 0 # ys == y * 2^n if ys <= x x -= ys if (x >> 64) % UInt64 == 0 # exit early, similar to above fast path if (y >> 64) % UInt64 == 0 x = UInt128(rem(x % UInt64, y % UInt64)) end return x end end ys >>>= 1 n -= 1 end return x end function mod(x::Int128, y::Int128) return Int128(mod(BigInt(x), BigInt(y)))::Int128 end else *(x::T, y::T) where {T<:Union{Int128,UInt128}} = mul_int(x, y) div(x::Int128, y::Int128) = checked_sdiv_int(x, y) div(x::UInt128, y::UInt128) = checked_udiv_int(x, y) rem(x::Int128, y::Int128) = checked_srem_int(x, y) rem(x::UInt128, y::UInt128) = checked_urem_int(x, y) end # issue #15489: since integer ops are unchecked, they shouldn't check promotion for op in (:+, :-, :*, :&, :|, :xor) @eval function $op(a::Integer, b::Integer) T = promote_typeof(a, b) aT, bT = a % T, b % T not_sametype((a, b), (aT, bT)) return $op(aT, bT) end end const _mask1_uint128 = (UInt128(0x5555555555555555) << 64) | UInt128(0x5555555555555555) const _mask2_uint128 = (UInt128(0x3333333333333333) << 64) | UInt128(0x3333333333333333) const _mask4_uint128 = (UInt128(0x0f0f0f0f0f0f0f0f) << 64) | UInt128(0x0f0f0f0f0f0f0f0f) """ bitreverse(x) Reverse the order of bits in integer `x`. `x` must have a fixed bit width, e.g. be an `Int16` or `Int32`. !!! compat "Julia 1.5" This function requires Julia 1.5 or later. # Examples ```jldoctest julia> bitreverse(0x8080808080808080) 0x0101010101010101 julia> reverse(bitstring(0xa06e)) == bitstring(bitreverse(0xa06e)) true ``` """ function bitreverse(x::BitInteger) # TODO: consider using llvm.bitreverse intrinsic z = unsigned(x) mask1 = _mask1_uint128 % typeof(z) mask2 = _mask2_uint128 % typeof(z) mask4 = _mask4_uint128 % typeof(z) z = ((z & mask1) << 1) | ((z >> 1) & mask1) z = ((z & mask2) << 2) | ((z >> 2) & mask2) z = ((z & mask4) << 4) | ((z >> 4) & mask4) return bswap(z) % typeof(x) end