# Copyright 2019 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import tensorflow as tf from numpy.testing import assert_allclose import gpflow from gpflow.config import default_jitter from gpflow.mean_functions import Constant rng = np.random.RandomState(0) class Datum: X = rng.rand(20, 1) * 10 Y = np.sin(X) + 0.9 * np.cos(X * 1.6) + rng.randn(*X.shape) * 0.8 Y = np.tile(Y, 2) # two identical columns Xtest = rng.rand(10, 1) * 10 data = (X, Y) class DatumVGP: N, Ns, DX, DY = 100, 10, 2, 2 np.random.seed(1) X = np.random.randn(N, DX) Xs = np.random.randn(Ns, DX) Y = np.random.randn(N, DY) q_mu = np.random.randn(N, DY) q_sqrt = np.random.randn(DY, N, N) q_alpha = np.random.randn(N, DX) q_lambda = np.random.randn(N, DX) ** 2 data = (X, Y) class DatumUpper: X = np.random.rand(100, 1) Y = np.sin(1.5 * 2 * np.pi * X) + np.random.randn(*X.shape) * 0.1 data = (X, Y) def _create_full_gp_model(): """ GP Regression """ full_gp_model = gpflow.models.GPR((Datum.X, Datum.Y), kernel=gpflow.kernels.SquaredExponential(), mean_function=gpflow.mean_functions.Constant(), ) opt = gpflow.optimizers.Scipy() @tf.function(autograph=False) def full_gp_model_closure(): return - full_gp_model.log_marginal_likelihood() opt.minimize(full_gp_model_closure, variables=full_gp_model.trainable_variables, options=dict(maxiter=300)) return full_gp_model def _create_approximate_models(): """ 1) Variational GP (with the likelihood set to Gaussian) 2) Sparse variational GP (likelihood is Gaussian, inducing points at the data) 3) Sparse variational GP (as above, but with the whitening rotation of the inducing variables) 4) Sparse variational GP Regression (as above, but there the inducing variables are 'collapsed' out, as in Titsias 2009) 5) FITC Sparse GP Regression """ model_1 = gpflow.models.VGP((Datum.X, Datum.Y), gpflow.kernels.SquaredExponential(), likelihood=gpflow.likelihoods.Gaussian(), mean_function=gpflow.mean_functions.Constant()) model_2 = gpflow.models.SVGP(gpflow.kernels.SquaredExponential(), gpflow.likelihoods.Gaussian(), inducing_variable=Datum.X.copy(), q_diag=False, mean_function=gpflow.mean_functions.Constant(), num_latent=Datum.Y.shape[1]) gpflow.utilities.set_trainable(model_2.inducing_variable, False) model_3 = gpflow.models.SVGP(kernel=gpflow.kernels.SquaredExponential(), likelihood=gpflow.likelihoods.Gaussian(), inducing_variable=Datum.X.copy(), q_diag=False, whiten=True, mean_function=gpflow.mean_functions.Constant(), num_latent=Datum.Y.shape[1]) gpflow.utilities.set_trainable(model_3.inducing_variable, False) model_4 = gpflow.models.GPRFITC((Datum.X, Datum.Y), kernel=gpflow.kernels.SquaredExponential(), inducing_variable=Datum.X.copy(), mean_function=Constant()) gpflow.utilities.set_trainable(model_4.inducing_variable, False) model_5 = gpflow.models.SGPR((Datum.X, Datum.Y), gpflow.kernels.SquaredExponential(), inducing_variable=Datum.X.copy(), mean_function=Constant()) gpflow.utilities.set_trainable(model_5.inducing_variable, False) # Train models opt = gpflow.optimizers.Scipy() @tf.function(autograph=False) def model_1_closure(): return - model_1.log_marginal_likelihood() @tf.function(autograph=False) def model_2_closure(): return - model_2.elbo(Datum.data) @tf.function(autograph=False) def model_3_closure(): return - model_3.elbo(Datum.data) @tf.function(autograph=False) def model_4_closure(): return - model_4.log_marginal_likelihood() @tf.function(autograph=False) def model_5_closure(): return - model_5.log_marginal_likelihood() opt.minimize(model_1_closure, variables=model_1.trainable_variables, options=dict(maxiter=300)) opt.minimize(model_2_closure, variables=model_2.trainable_variables, options=dict(maxiter=300)) opt.minimize(model_3_closure, variables=model_3.trainable_variables, options=dict(maxiter=300)) opt.minimize(model_4_closure, variables=model_4.trainable_variables, options=dict(maxiter=300)) opt.minimize(model_5_closure, variables=model_5.trainable_variables, options=dict(maxiter=300)) return model_1, model_2, model_3, model_4, model_5 def _create_vgp_model(kernel, likelihood, q_mu=None, q_sqrt=None): model_vgp = gpflow.models.VGP((DatumVGP.X, DatumVGP.Y), kernel, likelihood) if q_mu is not None and q_sqrt is not None: model_vgp.q_mu.assign(q_mu) model_vgp.q_sqrt.assign(q_sqrt) return model_vgp def _create_vgpao_model(kernel, likelihood, q_alpha, q_lambda): model_vgpoa = gpflow.models.VGPOpperArchambeau((DatumVGP.X, DatumVGP.Y), kernel, likelihood, num_latent=DatumVGP.DY) model_vgpoa.q_alpha.assign(q_alpha) model_vgpoa.q_lambda.assign(q_lambda) return model_vgpoa def _create_svgp_model(kernel, likelihood, q_mu, q_sqrt, whiten): model_svgp = gpflow.models.SVGP(kernel, likelihood, DatumVGP.X.copy(), whiten=whiten, q_diag=False, num_latent=DatumVGP.DY) model_svgp.q_mu.assign(q_mu) model_svgp.q_sqrt.assign(q_sqrt) return model_svgp @pytest.mark.parametrize('approximate_model', _create_approximate_models()) def test_equivalence(approximate_model): """ With a Gaussian likelihood, and inducing points (where appropriate) positioned at the data, many of the gpflow methods are equivalent (perhaps subject to some optimization). """ gpr_model = _create_full_gp_model() gpr_likelihood = - gpr_model.log_likelihood() if isinstance(approximate_model, gpflow.models.SVGP): approximate_likelihood = - approximate_model.log_likelihood(Datum.data) else: approximate_likelihood = - approximate_model.log_likelihood() assert_allclose(gpr_likelihood, approximate_likelihood, rtol=1e-6) gpr_kernel_ls = gpr_model.kernel.lengthscale.read_value() gpr_kernel_var = gpr_model.kernel.variance.read_value() approximate_kernel_ls = approximate_model.kernel.lengthscale.read_value() approximate_kernel_var = approximate_model.kernel.variance.read_value() assert_allclose(gpr_kernel_ls, approximate_kernel_ls, 1e-4) assert_allclose(gpr_kernel_var, approximate_kernel_var, 1e-3) gpr_mu, gpr_var = gpr_model.predict_y(Datum.Xtest) approximate_mu, approximate_var = approximate_model.predict_y(Datum.Xtest) assert_allclose(gpr_mu, approximate_mu, 1e-3) assert_allclose(gpr_var, approximate_var, 1e-4) def test_equivalence_vgp_and_svgp(): kernel = gpflow.kernels.Matern52() likelihood = gpflow.likelihoods.StudentT() svgp_model = _create_svgp_model(kernel, likelihood, DatumVGP.q_mu, DatumVGP.q_sqrt, whiten=True) vgp_model = _create_vgp_model(kernel, likelihood, DatumVGP.q_mu, DatumVGP.q_sqrt) likelihood_svgp = svgp_model.log_likelihood(DatumVGP.data) likelihood_vgp = vgp_model.log_likelihood() assert_allclose(likelihood_svgp, likelihood_vgp, rtol=1e-2) svgp_mu, svgp_var = svgp_model.predict_f(DatumVGP.Xs) vgp_mu, vgp_var = vgp_model.predict_f(DatumVGP.Xs) assert_allclose(svgp_mu, vgp_mu) assert_allclose(svgp_var, vgp_var) def test_equivalence_vgp_and_opper_archambeau(): kernel = gpflow.kernels.Matern52() likelihood = gpflow.likelihoods.StudentT() vgp_oa_model = _create_vgpao_model(kernel, likelihood, DatumVGP.q_alpha, DatumVGP.q_lambda) K = kernel(DatumVGP.X) + np.eye(DatumVGP.N) * default_jitter() L = np.linalg.cholesky(K) L_inv = np.linalg.inv(L) K_inv = np.linalg.inv(K) mean = K @ DatumVGP.q_alpha prec_dnn = K_inv[None, :, :] + np.array([np.diag(l ** 2) for l in DatumVGP.q_lambda.T]) var_dnn = np.linalg.inv(prec_dnn) svgp_model_unwhitened = _create_svgp_model(kernel, likelihood, mean, np.linalg.cholesky(var_dnn), whiten=False) mean_white_nd = L_inv.dot(mean) var_white_dnn = np.einsum('nN,dNM,mM->dnm', L_inv, var_dnn, L_inv) q_sqrt_nnd = np.linalg.cholesky(var_white_dnn) vgp_model = _create_vgp_model(kernel, likelihood, mean_white_nd, q_sqrt_nnd) likelihood_vgp = vgp_model.log_likelihood() likelihood_vgp_oa = vgp_oa_model.log_likelihood() likelihood_svgp_unwhitened = svgp_model_unwhitened.log_likelihood(DatumVGP.data) assert_allclose(likelihood_vgp, likelihood_vgp_oa, rtol=1e-2) assert_allclose(likelihood_vgp, likelihood_svgp_unwhitened, rtol=1e-2) vgp_oa_mu, vgp_oa_var = vgp_oa_model.predict_f(DatumVGP.Xs) svgp_unwhitened_mu, svgp_unwhitened_var = svgp_model_unwhitened.predict_f(DatumVGP.Xs) vgp_mu, vgp_var = vgp_model.predict_f(DatumVGP.Xs) assert_allclose(vgp_oa_mu, vgp_mu) assert_allclose(vgp_oa_var, vgp_var, rtol=1e-4) # jitter? assert_allclose(svgp_unwhitened_mu, vgp_mu) assert_allclose(svgp_unwhitened_var, vgp_var, rtol=1e-4) def test_upper_bound_few_inducing_points(): """ Test for upper bound for regression marginal likelihood """ model_vfe = gpflow.models.SGPR((DatumUpper.X, DatumUpper.Y), gpflow.kernels.SquaredExponential(), inducing_variable=DatumUpper.X[:10, :].copy(), mean_function=Constant()) opt = gpflow.optimizers.Scipy() @tf.function(autograph=False) def model_vfe_closure(): return - model_vfe.log_marginal_likelihood() opt.minimize(model_vfe_closure, variables=model_vfe.trainable_variables, options=dict(maxiter=500)) full_gp = gpflow.models.GPR((DatumUpper.X, DatumUpper.Y), kernel=gpflow.kernels.SquaredExponential(), mean_function=Constant()) full_gp.kernel.lengthscale.assign(model_vfe.kernel.lengthscale) full_gp.kernel.variance.assign(model_vfe.kernel.variance) full_gp.likelihood.variance.assign(model_vfe.likelihood.variance) full_gp.mean_function.c.assign(model_vfe.mean_function.c) lml_upper = model_vfe.upper_bound() lml_vfe = model_vfe.log_marginal_likelihood() lml_full_gp = full_gp.log_marginal_likelihood() assert lml_vfe < lml_full_gp assert lml_full_gp < lml_upper