https://github.com/smolkelab/Ribozyme_switch_generator
Tip revision: 786f72a93791e6d2e7bd35b2bb1ee66ed21a1680 authored by Calvin M Schmidt on 25 May 2020, 20:45:40 UTC
Initial commit
Initial commit
Tip revision: 786f72a
Train_additional_models.py
import pickle
import numpy as np
from keras.models import Sequential
from keras.models import model_from_json
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv3D
def loop_one_hot_encode(loop_seq, loop_struct):
'''
Encodes a ribozyme loop into a 3-dimensional array meant to represent its 3-domensional physical form. The
dimensions are as follows:
width - 2, to represent the nucleotides as the directly emerge from a paired stem
height - 15, to encapsulate long loops. Most positions will be blank for shorter loops
channels - 8, to represent the 4 nucleotides, each in a bonded or unbonded state
:param loop_seq: String of nucleotides representing the sequence of the loop
:param loop_struct: String of dot-bracket notation representing the structure of the loop
:return: numpy array of size (2, 1, 15, 8)
'''
encoded_loop = np.zeros((2, 1, 15, 8))
loop_codes = ['A', 'A', 'U', 'U', 'C', 'C', 'G', 'G']
if len(loop_seq) <= 30:
# Iterates forward from the 5' end of the loop and backwards from the 3' end simultaneously, marking at each
# position the correct channel.
for i in range(len(loop_seq) // 2):
encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1
encoded_loop[1, 0, i, loop_codes.index(loop_seq[-(i + 1)]) + (loop_struct[-(i + 1)] == '(' or loop_struct[-(i + 1)] == ')')] = 1
# If an odd number of nucleotides, put the on at the apex of the loop into the 1st column.
if len(loop_seq) % 2 == 1:
i = len(loop_seq) // 2
encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1
else:
# If the loop is too large to fit, just does the first 15 on each side.
for i in range(15):
encoded_loop[0, 0, i, loop_codes.index(loop_seq[i]) + (loop_struct[i] == '(' or loop_struct[i] == ')')] = 1
encoded_loop[1, 0, i, loop_codes.index(loop_seq[-(i + 1)]) + (loop_struct[-(i + 1)] == '(' or loop_struct[-(i + 1)] == ')')] = 1
return encoded_loop
def struct_dict_to_array(in_dict):
'''
Turns a dictionary of ribozyme sequences and structures into a 5-dimensional numpy array, containing 4-dimensional
arrays representing paired ribozyme loops for each sequence, along with an array containing the basal
gene-regulatory activity for each sequence.
:param in_dict: Dictionary of ribozyme sequences where the keys are tuples like so: (sequence string, dot-bracket
structure string) and the value is the basal gene-regulatory activity for that sequence.
:return: Tuple containing 3 arrays:
5-dimensional numpy array representing paired ribozyme loops for each sequence
1-dimensional numpy array containing the basal gene-regulatory activity for each sequence
1-dimensional array of tuples, containing the sequences of the 2 loops for each sequence
'''
out_X = []
out_y = []
out_loops = []
first, mid, last = 'GCUGUC', 'CUGAUGA', 'GAAACAGC'
# Iterates through each sequence in the dictionary
for seq in in_dict.keys():
test_seq = seq[0]
test_struct = seq[1]
# Gets the sequence and array of the first loop
loop_seq = test_seq[test_seq.find(first) + len(first): test_seq.find(mid)]
loop_struct = test_struct[test_seq.find(first) + len(first): test_seq.find(mid)]
l1 = loop_one_hot_encode(loop_seq, loop_struct)
l1_seq = loop_seq
# Gets the sequence and array of the second loop
loop_seq = test_seq[test_seq.find(mid) + len(mid): test_seq.find(last)]
loop_struct = test_struct[test_seq.find(mid) + len(mid): test_seq.find(last)]
l2 = loop_one_hot_encode(loop_seq, loop_struct)
# Pairs the 2 loops up and stores paired array and value
out_X.append(np.concatenate((l1, l2), axis=1))
out_y.append(in_dict[seq][0])
out_loops.append((l1_seq, loop_seq))
out_X = np.array(out_X).astype('float32')
out_y = np.expand_dims(out_y, axis=1)
return out_X, out_y, out_loops
# Reads in training data
rs_list = []
rs_list.extend(pickle.load(open('NGS_data/CMS_NGS1_5_RNAs_min_structures_all_activities.pkl', 'rb'), encoding = 'latin1'))
rs_list.extend(pickle.load(open('NGS_data/CMS_NGS2_1_RNAs_min_structures_all_activities_normed.pkl', 'rb'), encoding = 'latin1'))
rs_list.extend(pickle.load(open('NGS_data/CMS_NGS3_1_RNAs_min_structures_all_activities.pkl', 'rb'), encoding = 'latin1'))
rest_dict = {}
# Pulls training data into dictionary for later conversion to array
for seq in rs_list:
target_dict = rest_dict
target_dict[seq[0][0][0]] = seq
train_seq_dict = {}
train_dict = rest_dict
for i in train_dict.keys():
train_seq_dict[(tuple(train_dict[i][0][0][1][0]), tuple(train_dict[i][0][0][1][1]), train_dict[i][0][0][0],
train_dict[i][0][0][2])] = \
[train_dict[i][0][1], train_dict[i][1]]
# Segments training data by structure, creating a dictionaries where each sequence in that dictionary has the same
# structure
train_segmented_dict = {}
for loop in train_seq_dict:
if (len(loop[0][0]) / 2, len(loop[0][1]) / 2, loop[1][0], loop[1][1]) not in train_segmented_dict:
train_segmented_dict[(len(loop[0][0]) / 2, len(loop[0][1]) / 2, loop[1][0], loop[1][1])] = {}
train_segmented_dict[(len(loop[0][0]) / 2, len(loop[0][1]) / 2, loop[1][0], loop[1][1])][(loop[2], loop[3])] = \
train_seq_dict[loop]
# List of structures in the segmented dictionary that have over 50 entries
train_populous_loops = [i for i in train_segmented_dict.keys() if len(train_segmented_dict[i]) > 50]
# List detailing how to expand the structure search parameter if not enough sequences in training set to train model
diff_list = [(1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1, 1), (3, 2, 1, 1), (3, 3, 1, 1), (3, 3, 2, 1), (3, 3, 2, 2),
(4, 4, 2, 2)]
# Get the loop size of model to save
te_seg = [0, 0, 0, 0]
te_seg[0] = int(input("Loop 1 size: "))
te_seg[1] = int(input("Loop 2 size: "))
te_seg[2] = int(input("Stem 1 length: "))
te_seg[3] = int(input("Stem 2 length: "))
training_dict = {}
# Iterates through the diff_list, relaxing the requirements for structural similarity until 1000 sequences are in the
# training set
for i in diff_list:
# Updates the dictionary with sequences that have the prescribed difference in structure
for tr_seg in train_populous_loops:
if abs(te_seg[0] - tr_seg[0]) < i[0] and abs(te_seg[1] - tr_seg[1]) < i[1] and \
abs(te_seg[2] - tr_seg[2]) < i[2] and abs(te_seg[3] - tr_seg[3]) < i[3]:
training_dict.update(train_segmented_dict[tr_seg])
# If at least 1000 sequences are in the training set, moves forward
trX, trY, trloops = struct_dict_to_array(training_dict)
if len(trY) > 1000:
break
# Defines the model
model = Sequential()
layer = Conv3D(32, (2, 2, 2),
activation='relu',
input_shape=(2, 2, 15, 8))
model.add(layer)
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(output_dim=1))
# Optimize with SGD
model.compile(loss='mean_squared_error', optimizer='adam')
# Fit model in batches
model.fit(trX, trY[:, 0], nb_epoch=100, batch_size=1000, verbose=1)
# Dumps model to json for later predictions
model_json = model.to_json()
with open('Models/' + str(te_seg) + ".json", "w") as json_file:
json_file.write(model_json)
model.save_weights('Models/' + str(te_seg) + "model.h5")
print("Saved model to disk")