Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:50cc53a33a9c2bb73d63d40106f4be57e056d790

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
function X_1_m_n(m,n,base_ring : equation_directory:="models_X1_m_n", zeta_m:=0)
    //Input: m,n - integers such that m divides n
    //       base_ring - a ring
    //       equation_directory - directory with files X1_m_n.txt containing models
    //       zeta_m - a primitive mth root of unity in the base_ring (if unspecified one will be chosen)
    //Output: C - a curve
    //Returns an algebraic model C of the modular curve X_1(m,n) as a curve over base_ring
    assert IsDivisibleBy(n,m);
    if m gt 2 then
        if zeta_m ne 0 then
            assert zeta_m^m eq 1 and &and[zeta_m^e ne 1: e in Divisors(m)| e ne m];
        else
            try
                zeta_m := RootOfUnity(m,base_ring);
            catch e
                printf "Specified base ring %o does not contain a %oth root of unity", base_ring, m;
                assert false;
            end try;
        end if;
        z:=zeta_m; i:=zeta_m;
    end if;
    n_str := IntegerToString(n);
    m_str := IntegerToString(m);
    file_name := equation_directory cat "/X1_" cat m_str cat "_" cat n_str cat ".txt";
    data := Read(file_name);
    data := Split(data);
    //example contents of the file X1_2_10.txt
    //X := v^2 + (u^2 - 1)*v - 1;
    //q := 1/u;
    //t := -4*u/(u^2*v + u^2 - v + 3);
    //E:=[0,t^2-2*q*t-2,0,-(t^2-1)*(q*t+1)^2,0];
    //P:=[(t+1)*(q*t+1),t*(q*t+1)*(t+1)];
    //Q:=[0,0];
    A<u,v> := AffineSpace(base_ring,2);
    for line in data do
        val := Split(Split(line,"=")[2],";")[1];
        if line[1] eq "X" then X := eval(val); end if;
        if line[1] eq "q" then q := eval(val); end if;
        if line[1] eq "r" then r := eval(val); end if;
        if line[1] eq "s" then s := eval(val); end if;
        if line[1] eq "t" then t := eval(val); end if;
        if line[1] eq "E" then E := eval(val); end if;
        if line[1] eq "P" then P := eval(val); end if;
        if line[1] eq "Q" then Q := eval(val); end if;
    end for;
    C := Curve(A,X);
    return ProjectiveClosure(C),E,P,Q;
end function;

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API