\name{rnchild}
\title{Sampling child 'nacopula's}
\alias{rnchild}
\alias{rnchild-methods}
\alias{rnchild,nacopula-method}
\description{
Method for generating vectors of random numbers of nested Archimedean
copulas which are child copulas.
}
\usage{
rnchild(x, theta0, V0, ...)
}
\arguments{
\item{x}{an \R object of \code{\link{class}}
\code{"\linkS4class{nacopula}"}, typically emerging from and
\code{"\linkS4class{outer_nacopula}"} constructed with
\code{\link{onacopula}()}.}
\item{theta0}{the parameter (vector) of the parent Archimedean copula
which contains \code{x} as a child.}
\item{V0}{a \code{\link{numeric}} vector of realizations of
\eqn{V_{0}}{V0} following \eqn{F_{0}}{F0} whose length determines the
number of generated vectors, i.e., for each realization
\eqn{V_{0}}{V0}, a vector of variates from \code{x} is generated.}
\item{\dots}{possibly further arguments for the given copula family.}
}
\details{
The generation is done recursively, descending the tree implied by the
nested Archimedean structure. The algorithm is based on a mixture
representation and requires sampling \eqn{V_{01}\sim F_{01}}{V01 ~ F01}
given random variates \eqn{V_0\sim F_{0}}{V0 ~ F0}. Calling
\code{"rnchild"} is only intended for experts. The typical call of
this function takes place through \code{\link{rnacopula}()}.
}
\value{
a list with components
\item{U}{a \code{\link{numeric}} matrix containing the vector of random
variates from the child copula. The number of rows of this matrix
therefore equals the length of \eqn{V_{0}}{V0} and the number of
columns corresponds to the dimension of the child copula.}
\item{indcol}{an \code{\link{integer}} vector of indices of \code{U}
(the vector following a nested Archimedean copula of which \code{x} is
a child) whose corresponding components of \code{U} are arguments of
the nested Archimedean copula \code{x}.}
}
\author{Marius Hofert, Martin Maechler}
\seealso{
\code{\link{rnacopula}}; classes \code{"\linkS4class{nacopula}"} and
\code{"\linkS4class{outer_nacopula}"}, see also
\code{\link{onacopula}()}.
}
\references{
Hofert, M. (2010a),
Efficiently sampling nested Archimedean copulas,
\emph{Computational Statistics & Data Analysis}, in press.
Hofert, M. (2010b),
\emph{Sampling Nested Archimedean Copulas with Applications to CDO Pricing},
Suedwestdeutscher Verlag fuer Hochschulschriften AG & Co. KG.
McNeil, A. J. (2008),
Sampling nested Archimedean copulas,
\emph{Journal of Statistical Computation and Simulation} \bold{78}, 6, 567--581.
}
\examples{
## Construct a three-dimensional nested Clayton copula with parameters
## chosen such that the Kendall's tau of the respective bivariate margins
## are 0.2 and 0.5.
theta0 <- copClayton@tauInv(.2)
theta1 <- copClayton@tauInv(.5)
C3 <- onacopula("C", C(theta0, 1, C(theta1, c(2,3))))
## Sample n random variates from V0 ~ F0, a Gamma(1/theta0,1) distribution.
n <- 1000
V0 <- copClayton@V0(n, theta0)
## Given these variates V0, sample the child copula, i.e., the bivariate
## nested Clayton copula with parameter theta1
U23 <- rnchild(C3@childCops[[1]], theta0, V0)
## Now build the three-dimensional vectors of random variates by hand
U1 <- copClayton@psi(rexp(n)/V0, theta0)
U <- cbind(U1, U23$U)
## Plot the vectors of random variates from the three-dimensional nested
## Clayton copula
splom2(U)
}
\keyword{methods}
\keyword{distribution}