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Abstract. Additive models for conditional quantile functions provide an attractive frame-
work for non-parametric regression applications focused on features of the response be-
yond its central tendency. Total variation roughness penalities can be used to control
the smoothness of the additive components much as squared Sobelev penalties are used
for classical L2 smoothing splines. We describe a general approach to estimation and
inference for additive models of this type. We focus attention primarily on selection of
smoothing parameters and on the construction of confidence bands for the nonparametric
components. Both pointwise and uniform confidence bands are introduced; the uniform
bands are based on the Hotelling (1939) tube approach. Some simulation evidence is pre-
sented to evaluate finite sample performance and the methods are also illustrated with an
application to modeling childhood malnutrition in India.

1. Introduction

Models with additive nonparametric effects offer a valuable dimension reduction device
throughout applied statistics. In this paper we describe some new estimation and inference
methods for additive quantile regression models. The methods employ the total variation
smoothing penalties introduced in Koenker, Ng, and Portnoy (1994) for univariate compo-
nents and Koenker and Mizera (2004) for bivariate components. We focus on selection of
smoothing parameters including lasso-type selection of parametric components, and on post
selection inference methods, particularly confidence bands for nonparametric components
of the model.

The motivation for these developments arose from an effort to compare the performance
of additive modeling using penalty methods with the quantile regression boosting approach
recently suggested by Fenske, Kneib, and Hothorn (2008) in a study of risk factors for early
childhood malnutrition in India. Their study, based on the international Demographic and
Health Survey (DHS) sponsored by USAID, explored models for children’s height as an
indicator of nutritional status. Interest naturally focuses on the lower conditional quantiles
of height. The 2005-6 DHS survey of India involved roughly 37,000 children between the
ages of zero to five. As detailed below in Table 4, there were a large number of potentially
important discrete covariates: educational status of the parents, economic status of the
household, mother’s religion, ownership of various consumer durables as well as six or
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seven other covariates for which an additive nonparametric component was thought to
be desirable. The application thus posed some serious computational and methodological
challenges.

Rather than estimate models for mean height, or resort to binary response modeling for
whether height exceeds an age-specific threshold, Fenske, Kneib, and Hothorn (2008) sug-
gested estimating conditional quantile models for the first decile, 0.10, of heights. Boosting
provides a natural approach to model selection in this context, and given the relatively
large sample size also offers some computational advantages. So it became a challenge to
see whether the additive modeling strategies described in Koenker (2005) could be adapted
to problems of this scale and complexity. Initial forays into estimation of these models
indicated that computational feasibility wasn’t really an issue. In effect estimation of such
models involves solving a fairly large but very sparse linear programming problem, a task
for which modern interior point methods employing advances in sparse linear algebra are
well-suited. Even though a typical model might have nearly 40,000 observations after aug-
mentation by the penalty terms and 2200 parameters, estimation required only 5-10 seconds
for (reasonable) fixed values of the smoothing penalty parameters. What loomed more omi-
nously over the horizon was the problem of smoothing parameter selection, and ultimately
the problem of evaluating the precision of estimated components after model selection.

We will begin by briefly describing the class of penalized additive models to be consid-
ered in the next section. Section 3 describes a general approach to selection of smoothing
parameters. Sections 4 and 5 describe a general approach to constructing confidence bands,
pointwise and uniform bands respectively, for the additive nonparametric components of
the model. Section 6 reports some simulation evidence on model selection methods and
confidence band performance. Section 7 returns to our motivating application and explores
estimation and inference for malnutrition risk factors. Some comparisons with the boosting
results of Fenske, Kneib, and Hothorn (2008) are made at the end of that section.

2. Additive Models for Quantile Regression

Additive models have received considerable attention since their introduction by Breiman
and Friedman (1985) and Hastie and Tibshirani (1986, 1990). They provide a pragmatic
approach to nonparametric regression modeling; by restricting nonparametric components
to be composed of low-dimensional additive pieces we can circumvent some of the worst
aspects of the notorious curse of dimensionality. It should be emphasized that we use the
word “circumvent’ advisedly, in full recognition that we have only swept difficulties under
the rug by the assumption of additivity. When conditions for additivity are violated there
will obviously be costs.

Our approach to additive models for quantile regression and especially our implemen-
tation of methods in R has been heavily influenced by Wood (2006, 2009) . In some
fundamental respects the approaches are quite distinct: Gaussian likelihood is replaced
by (Laplacean) quantile fidelity, squared L2 norms as measures of the roughness of fitted
functions are replaced by corresponding L1 norms measuring total variation, and truncated
basis expansions are supplanted by sparse algebra as a computational expedient. But in
many other respects the structure of the models is quite similar. We will consider models
for conditional quantiles indexed by τ ∈ (0, 1) of the general form:



ADDITIVE MODELS FOR QUANTILE REGRESSION 3

(1) QY i|xi,zi
(τ |xi, zi) = x>i θ0 +

J∑
j=1

gj(zij).

The nonparametric components gj will be assumed to be continuous functions, either
univariate, R → R, or bivariate, R2 → R. We will denote the vector of these functions
as g = (g1, . . . , gJ). Our task is to estimate these functions together with the Euclidean
parameter θ0 ∈ Rp0 , by solving

(2) min
(θ0,g)

∑
ρτ (yi − x>i θ0 −

∑
gj(zij)) + λ0‖θ0‖1 +

J∑
j=1

λj
∨

(∇gj)

where ρτ (u) = u(τ − I(u < 0) is the usual quantile objective function, ‖θ0‖1 =
∑

K

k=1 |θ0k|
and

∨
(∇gj) denotes the total variation of the derivative or gradient of the function g.

Recall that for g with absolutely continuous derivative g′ we can express the total variation
of g′ : R → R as ∨

(g′(z)) =
∫
|g′′(z)|dz

while for g : R2 → R with absolutely continuous gradient,∨
(∇g) =

∫
‖∇2g(z)‖dz

where ∇2g(z) denotes the Hessian of g, and ‖·‖ will denote the usual Hilbert-Schmidt norm
for matrices.

There is an extensive literature in image processing on the use of total variation smooth-
ing penalties, initiated by Rudin, Osher, and Fatemi (1992). Edge-detection is an important
consideration in imaging and total variation penalization permits sharp breaks in gradients
that would be prohibited by conventional Sobolev penalties. Koenker and Mizera (2004)
discuss the bivariate version of the total variation roughness penalty in greater detail and
offer further motivation and references for it. In the univariate setting, g : R → R, total
variation penalties were suggested in Koenker, Ng, and Portnoy (1994) as computational
convenient smoothing device for nonparametric quantile regression. Total variation penal-
ties also underlie the taut-string methods of Davies and Kovac (2001), and the fused lasso
methods of Tibshirani, Saunders, Rosset, Zhu, and Knight (2005), although both approaches
focus primarily on penalization of the total variation of the function itself rather than its
derivative.

Solutions to the variational problem (2) are piecewise linear with knots at the observed
zi in the univariate case, and piecewise linear on a triangulation of the observed zi’s in
the bivariate case. This characterization greatly simplifies the computations required to
solve (2), which can therefore be written as a linear program with (typically) a very sparse
constraint matrix consisting mostly of zeros. This sparsity greatly facilitates efficient solu-
tion of the resulting problem, as described in Koenker and Ng (2005). Such problems are
efficiently solved by modern interior point methods for linear programming. Backfitting is
not required.
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3. Model Selection

A challenging task for any regularization problem like (2) is the choice of the λ pa-
rameters. When, as in our application, there are several of these λ’s then the problem is
especially daunting. Following a proposal of Machado (1993) for parametric quantile regres-
sion, adapted to total variation penalized quantile regression by Koenker, Ng and Portnoy,
we have relied upon the Schwarz (1978) like criterion

SIC(λ) = n log σ̂(λ) + 1
2p(λ) log(n)

where σ̂(λ) = n−1
∑n

i=1 ρτ (yi − ĝ(x, z)), and p(λ) is the effective dimension of the fitted
model

ĝ(x, z) = x>θ̂0 +
J∑
j=1

ĝj(z).

The quantity p(λ) is usually defined for linear estimators in terms of the trace of a pseudo
projection matrix, the matrix mapping observed response into fitted values. The situation is
somewhat similar for quantile regression fitting except that we simply compute the number
of zero residuals for the fitted model to obtain p(λ). Recall that in unpenalized quantile
regression fitting a p-parameter model yields precisely p zero residuals provided that the
yi’s are in general position. This definition of p(λ) can be viewed from a more unified
perspective as consistent with the definition proposed by Meyer and Woodroofe (2000),

p(λ) = div(ĝ) =
n∑
i=1

∂ĝ(xi, zi)
∂yi

,

see Koenker (2005, p.243). A consequence of this approach to characterizing model di-
mension is that it is essential to avoid “tied” responses; we ensure this by “dithering” the
response variable.

Optimizing SIC(λ) is still a difficult task made more challenging by the fact that the
objective function is discontinuous. As any of the λ’s increase so the regularization becomes
more severe new constraints become binding and initially free parameters vanish from the
model, thereby reducing the effective dimension of the model. When there are several λ’s
a prudent strategy would seem to be to explore informally, trying to narrow the region of
optimization and then resort to some form of global optimizer to narrow the selection. In
our applications we have relied on the R functions optimize for cases in which there is a
single λ, and the simulated annealing option of optim when there are several λ’s in play.

4. Pointwise Confidence Bands

Confidence bands for nonparametric regression introduce some new challenges. As with
any shrinkage type estimation method there are immediate questions of bias. How do
we ensure that the bands are centered properly? Bayesian interpretation of the bands as
pioneered by Wahba (1983) and Nychka (1983) provides some shelter from these doubts. For
our additive quantile regression models we have adopted a variant of the Nychka approach
as implemented by Wood in the mgcv package.
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As in any quantile regression inference problem we need to account for potential hetero-
geneity of the conditional density of the response. We do this by adopting Powell’s (1991)
proposal to estimate local conditional densities with a simple Gaussian kernel method.

The pseudo design matrix incorporating both the lasso and total variation smoothing
penalties can be written as,

X̃ =


X0 X1 · · · XJ

λ0HK 0 · · · 0
0 λ1P1 · · · 0
... · · · . . .

...
0 0 · · · λjPJ

 .

Here X0 denotes the matrix representing the parametric covariate effects, the Xj ’s represent

the basis expansion of the gj functions, HK = [0
...IK ] is the penalty contributions from the

lasso excluding any penalty on the intercept and the Pj terms represent the contribution
from the penalty terms on each of the smoothed components. The covariance matrix for
the vector of estimates θ̂ of the full set of parameters, θ = (θ>0 , θ

>
1 , · · · , θ>J )> is given by the

sandwich formula,

(4.1) V = τ(1− τ)(X̃>ΨX̃)−1(X̃>X̃)−1(X̃>ΨX̃)−1

where Ψ denotes a diagonal matrix with the first n elements given by the local density
estimates,

f̂i = φ(ûi/hn)/hn

ûi is the ith residual from the fitted model, φ is the standard Gaussian density, and h is a
bandwidth determined by one of the usual built-in rules. See Koenker (2005) Section 3.4
for further details. The remaining elements of the Ψ diagonal corresponding to the penalty
terms are set to one.

Pointwise confidence bands can be easily constructed given this matrix V . A matrix Gj
representing the prediction of gj at some specified plotting points zij : i = 1, · · · ,m is first
made, so the m-vector with typical element, ĝj(zij), can be expressed as Gj θ̂j where θ̂j is the
subvector of estimated coefficients of the fitted model pertaining to ĝj . We then extract the
corresponding diagonal block, Vj of the matrix V , and compute the estimated covariance
matrix, V (Gj θ̂j) = GjVjG

>
j , and finally we extract the square root of its diagonal. The

only slight complication of this process is to recall that the intercept of the estimated model
needs to be appended to each such prediction and properly accounted for in the extraction
of the covariance matrix of the predictions. If this is not done then the variance at the lower
support point of the fitted function degenerates to zero.

An obvious criticism of this pointwise approach to constructing confidence bands is that
one may prefer to have uniform bands. This topic has received considerable attention
in recent years; there are several possible approaches including resampling. Recent work
by Krivobokova, Kneib, and Claeskens (2010) has shown how to adapt the early work of
Hotelling (1939) to some GAM models. Similar methods can be adapted to additive quantile
regression models, an approach that will be described in the next section.
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5. Uniform Confidence Bands

Uniform confidence bands for nonparametric regression estimation impose a stronger
probabilistic burden than the pointwise construction described above. We now require a
band of the form,

Bn(x) = (ĝn(x)− cασ̂n(x), ĝn(x) + cασ̂n(x))
such that the random band Bn covers the true curve {g0(x) : x ∈ X} with specified proba-
bility 1− α, over a given domain, X , for g

P{g0(x) ∈ Bn(x)|x ∈ X} = 1− α.
Our construction will employ the same σ̂n(x) local scale estimate described earlier, however
cα will need to change.

5.1. Uniform Bands for Series Estimators. For the sake of completeness we will begin
by sketching some theoretical underpinnings of the Hotelling tube approach in the simplest
Gaussian non-parametric setting for a series estimator, following the exposition of Johansen
and Johnstone (1990). The key insight of Hotelling (1939) was the realization that the
computation of the relevant rejection probability for band construction could be reduced
to finding the volume of a tubular region embedded in a sphere. Subsequent work by
Weyl (1939) and Naiman (1986) have generalized this approach to more general manifolds;
initially we will focus on the classical Gaussian nonparametric settings.

Consider estimating the model,

(5.2) yi = g0(xi) + ui,

with ui iid N (0, σ2). We adopt a series estimator of the form,

ĝ(x) = argminθ
n∑
i=1

(yi − 〈b(xi), θ〉)2

that is we consider estimators from the set,

G = {g : g(x) = 〈b(x), θ〉},
where b(x) denotes a vector, (b1(x), · · · , bp(x))> of basis functions for the series expansion.
The likelihood ratio statistic for testing H0 : θ = 0 against a general alternative is based on
the statistic

L = inf
x∈X

n∑
i=1

(yi − 〈b(xi), θ̂〉)2/
n∑
i=1

Y 2
i .

Letting B denote the matrix with i row (bj(xi)), we have θ̂ = (B>B)−1B>y and we will
write,

ĝ(x) = 〈b(x)>(B>B)−1B>, y〉 ≡ 〈`(x), y〉.
The pointwise standard error of ĝ(x) is,

σ(x) =
√
σ2b(x)>(B>B)−1b(x)

so we want to consider test statistics of the form,

Tn = sup
x∈X

ĝ(x)− g0(x))
σ(x)

.
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Given the null distribution of Tn we can obtain a confidence set,

C = {g0 | Tn < cα}.
Following Johansen and Johnstone (1990), we can write Tn = RW where

R2 = (ĝ(x)− g0(x))2/σ2(x) ∼ χ2
p,

and letting D = (B>B)−1,

W = sup
x∈X

ĝ(x)− g0(x))
σ(x)R

= sup
x∈X

(D1/2b(x))>D−1/2(θ̂ − θ0)

‖D1/2b(x)‖ ‖D−1/2(θ̂ − θ0)‖
≡ sup

x∈X
γ(x) · U.

Now, γ = {γ(x) : x ∈ X} is a curve on the sphere, Sp−1, in p dimensions, and U is uniformly
distributed on Sp−1. The random variables R2 and W are independent, with R2 ∼ χ2

p, so

(5.3) P(Tn > c) =
∫ ∞
c

P(W > c/r)P(R ∈ dr)

Hotelling (1939) showed that for non-closed, non-intersecting, curves, γ and w near 1,

(5.4) P(W > w) =
|γ|
2π

(1− w2)(p−2)/2 +
1
2

P(B(1/2, (p− 1)/2) ≥ w2) ≡ Hγ(w)

where |γ| =
∫
X ‖γ̇(x)‖dx is the length of curve enclosed by the tube and B(a, b) is a beta

random variable. Naiman (1986) significantly weakened the conditions on γ showing that
Hγ(w) is an upper bound for the probability. Naiman bounds (5.3) by

(5.5) P(Tn > c) ≤
∫ ∞
c

min{Hγ(c/r), 1}P(R ∈ dr).

Relaxing the upper bound constraint of one, Knowles (1987) integrates the simplified version
of (5.5) exactly to obtain the bound,

(5.6) P(Tn > c) ≤ |γ|
2π
e−c

2/2 + 1− Φ(c).

The foregoing assumes that σ2 is known; if not, there is the corresponding formula that
employs Student t bounds,

(5.7) P(Tn > c) ≤ |γ|
2π

(1 + c2/ν)−ν/2 + P(tν > c),

where ν = n− p is the degrees of freedom of the estimated model.
It should be emphasized at this point that in the foregoing homoscedastic Gaussian setting

the evaluation of these probability bounds is exact. More generally, we would have to rely
on asymptotic approximations to justify the corresponding bands. For example, in settings
where the ui in (5.2) had heteroscedastic structure we might replace σ2(B>B)−1 in the
earlier formulae with an appropriate Eicker-White sandwich. Sun, Loader, and McCormick
(2000) consider Hotelling tube methods for generalized linear models employing Edgeworth
expansion techniques to improve small sample performance; this does not appear to be a
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practical approach for penalized estimators of the type considered here, so we must rely on
large sample approximations in the sequel.

5.2. Uniform Bands for Penalized Series Estimators. Uniform confidence bands for
penalized series estimators can be constructed in much the same way we have just described
for the unpenalized case. Krivobokova, Kneib, and Claeskens (2010), drawing on earlier
work by Sun (1993) and Sun and Loader (1994) consider generalized additive models with
Gaussian penalties like those treated by Wood (2006). Maintaining our focus on the simple
univariate model (5.2) we replace our fixed target function, g0, with a random function
g0(x) = 〈b(x), θ〉 with θ ∼ N (θ0,Ω), yielding the hierarchical (mixed) model,

y ∼ N (Bθ0, σ2I +BΩB>),

The optimal (BLUP) estimator for θ is now,

θ̂ = (B>(σ2I +BΩB>)−1B)−1B>(σ2I +BΩB>)−1y

and ĝ(x) = 〈b(x), θ̂〉 has variance,

σ̂2(x) = b(x)>(B>(σ2I +BΩB>)−1B)−1b(x).

Equivalently, we may consider the penalized estimator,

θ̃(λ) = argmin{
n∑
i=1

(yi − 〈b(xi), θ〉)2 + λθ>Ω−1θ

= (B>B + λΩ−1)−1B>y.

Here λ represents a free scaling parameter for the covariance matrix of θ. Typically, the
choice of Ω imposes some form of smoothness on ĝ, and therefore λ controls the degree of
smoothing.

An orthodox Bayesian would, at this point, assign prior distributions for σ2 or λ, but
lacking the courage of our convictions, one can fall back instead on asymptotic justifications
for λ selection to rationalize the construction of bands as described above, modified to
incorporate the new σ̂(x). This approach is closely tied to the uniform confidence band
construction for local polynomial regression provided by Loader (2010) for the R package
locfit. Krivobokova, Kneib, and Claeskens (2010) have recently implemented a version
of this approach for a subclass of the GAM models encompassed by the mgcv package of
Wood (2010). In Section 6 we will report some (limited) simulation experience with this
approach and compare it with the bands constructed for total variation penalized quantile
regression estimators.

5.3. Uniform Bands for Penalized Quantile Regression Estimators. The extension
of the foregoing methods to the penalized quantile regression estimators described in Section
1, is quite straightforward. Pointwise confidence bands provide a local standard deviation
estimate σ̂j(z) : j = 1, · · · , J for each of the additive components as described in Section 3.
Given the construction of these local scale estimates, we can easily compute the Riemann
approximation of the relevant tube length, and inversion of (5.7) yields a critical value, cα,
for the band,

C = {ĝj(z)− cασ̂j(z), ĝj(z) + cασ̂j(z)|z ∈ Z}.



ADDITIVE MODELS FOR QUANTILE REGRESSION 9

More explicitly, the crucial quantity, |γ|, representing the length of the curve is computed
as follows: let ĝj = Gj θ̂j denote a vector of plotting points, ĝj(zij) : i = 1, · · · ,m, for
the estimated function and V̂j denote the corresponding diagonal block of the estimated
asymptotic covariance matrix of θ̂ given in (4.1). After Cholesky factorization of V̂j , we
may write Ξj = V̂

1/2
j Gj , a matrix with rows, ξi : i = 1, · · · ,m, and set γi = ξi/‖ξi‖ for

i = 1, · · · ,m. Finally, we have the discrete approximation

|γ| =
∫
‖γ̇(z)‖dz =

m∑
i=2

‖γi − γi−1‖.

Justification of the distributional properties of the analogues of the R2 and W variables
in this case follows from the asymptotic normality of the θ̂j ’s. This obviously requires
conditions that control the selection of λj ’s; Krivobokova, Kneib, and Claeskens (2010)
discuss the bias variance tradeoff implicit in this selection and give conditions for the validity
of their bands for GAM estimators with estimated λ. The simulation results of the next
section, provide some support for the asymptotic validity of this construction of the bands.

6. Some Simulation Evidence

To evaluate finite-sample performance of the confidence bands described above we have
undertaken some simulation experiments. The experiments all employ some variant of the
model,

g0(x) =
√
x(1− x) sin

(
2π(1 + 2−7/5)
x+ 2−7/5

)
,

introduced by Ruppert, Wand, and Carroll (2003), see Section 17.5.1. Design points, xi,
are generated as U [0, 1], and responses as,

yi = g0(xi) + σ(xi)ui,

where the ui’s are iid Gaussian, t3, t1, or centered χ2
3. The local scale factor σ(x) is either

constant, σ(x) = σ0, or linearly increasing in x, σ(x) = σ0(1 + x), with σ0 = 0.2. All the
experiments have sample size n = 400.

A typical realization of the experiment with iid Gaussian noise is shown in Figure 1. In
the right panel we see the true function as the solid red curve, the sample observations as
points, the estimated conditional mean model as the solid black curve. The latter curve is
estimated by penalized Gaussian likelihood, using Wood’s mgcv package, modified slightly to
accommodate the uniform confidence band construction provided by Krivobokova, Kneib,
and Claeskens (2010) in the R package Confbands. More explicitly we employ the command,

ghat <- gam(y ~ s(x,bs = "os", k=40))

The "os" option specifies the O-spline basis of Wand and Ormerod (2008) rather than
Wood’s default thin-plate basis, and setting k = 40 effectively increases the initial number
of basis functions from its default value. The latter option improves the centering of the
bands and thereby the coverage performance. The heavier grey band is the 0.95 pointwise
band as implemented in the mgcv package, while the lighter grey band is the 0.95 uniform
band as implemented in the Confbands package.



10 ROGER KOENKER

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Median Estimate

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

Mean Estimate

Figure 1. Confidence Bands for Penalized Estimators: Median and Mean
estimated curves are shown in blue with the target curve in red. The heavier
grey bands are 0.95 pointwise bands, while the lighter grey bands are the
0.95 uniform bands. Estimates are based on the same 400 Gaussian points.

In the left panel we illustrate the comparable fit for the median fit and the associated
confidence bands. Now the solid black line is the piecewise linear estimate based on the
total variation penalization described in Section 1. The selection of λ is done using the
procedure described in Section 2; more specifically, we use the following R specification:

g <- function(lam,y,x) AIC(rqss(y ~ qss(x, lambda = lam)),k = -1)
lamstar <- optimize(g, interval = c(0.001, .5), x = x, y = y)
f <- rqss(y ~ qss(x, lambda = lamstar$min))

Bands are then constructed following the procedure described in Sections 3 and 4, condi-
tional on the selection of λ. Again the heavier grey band is the pointwise 0.95 band, and the
lighter grey band is the 0.95 uniform band. As is to be expected in this Gaussian setting,
the bands for the mean are somewhat narrower than their median counterparts.

In Table 1 we report simulation results for the iid error models. The first three columns
of the table are devoted to accuracy of the two estimation methods. Root mean integrated
squared error (RMISE) and mean integrated absolute error (MIAE) give an overall impres-
sion of the precision of the two estimators. Mean effective degrees of freedom (MEDF),
provides a measure of the average complexity (dimensionality) of the estimated models. In
the Gaussian case, not surprisingly, the mean (gam) estimator performs somewhat better
than the median (rqss) estimator, but is somewhat more profligate in terms of the effec-
tive degrees of freedom of the estimated models. For the t3 error model, the performance
comparison is reversed, now the rqss estimator is somewhat better than the gam estimator,
and rqss is still considerably more parsimonious. For Cauchy errors, the gam estimator is
poor, but the rqss estimator performance remains quite good, only slightly worse than its
performance in the t3 case. Finally, in the χ2

3 case, our attempt to explore the consequences
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Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.063 0.046 12.936 0.960 0.999 0.323 0.920
gam 0.045 0.035 20.461 0.956 0.998 0.205 0.898
t3
rqss 0.071 0.052 11.379 0.955 0.998 0.274 0.929
gam 0.071 0.054 17.118 0.948 0.994 0.159 0.795
t1
rqss 0.099 0.070 9.004 0.930 0.996 0.161 0.867
gam 35.551 2.035 8.391 0.920 0.926 0.203 0.546
χ2

3

rqss 0.110 0.083 8.898 0.950 0.997 0.270 0.883
gam 0.096 0.074 14.760 0.947 0.987 0.218 0.683

Table 1. Performance of Penalized Estimators and Their Confidence
Bands: IID Error Model

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.081 0.063 10.685 0.951 0.998 0.265 0.936
gam 0.064 0.050 17.905 0.957 0.999 0.234 0.940
t3
rqss 0.091 0.070 9.612 0.952 0.998 0.241 0.938
gam 0.103 0.078 14.656 0.949 0.992 0.232 0.804
t1
rqss 0.122 0.091 7.896 0.938 0.997 0.222 0.893
gam 78.693 4.459 7.801 0.927 0.958 0.251 0.695
χ2

3

rqss 0.145 0.114 7.593 0.947 0.998 0.307 0.921
gam 0.138 0.108 12.401 0.941 0.973 0.221 0.626

Table 2. Performance of Penalized Estimators and Their Confidence
Bands: Linear Scale Model

of asymmetric error, we again see better accuracy for the gam estimates with somewhat
more parsimonious estimation than in the Gaussian case due to the weaker signal to noise
ratio of the model. Again, we should stress that the strict normal theory that underlies the
finite sample justification of the Hotelling tube approach is obviously inapplicable for most
of these simulations, but the asymptotic approximations appear to be adequate to obtain
decent performance from the estimated bands.
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Turning to the performance of the confidence bands, we consider two measures of perfor-
mance. First, we compute for each realization of the experiment the proportion of gridded
x values at which the band covers the value of g0(x). Averaging these proportions over the
1000 replications of the experiment gives coverage quite close the nominal coverage of 0.95
for the pointwise bands, while for the uniform bands this measure of coverage is almost
unity. An alternative measure of performance for the bands is to simply compute the fre-
quency with which the band covers the g0 at all values of x. These frequencies are reported
in the last two columns of the table for the pointwise and uniform bands. As expected,
the pointwise bands uniform coverage is poor, on average they cover 0.95 of the curve, but
they cover the entire curve only occasionally, achieving around .15 to .32 coverage. The
uniform bands, as expected, perform much better achieving essential their nominal coverage
probabilities of 0.95 except at the Cauchy and χ2 where coverage is somewhat attenuated.
Coverage for the rqss estimator is consistently better than for the gam estimator except in
the iid Gaussian case.

Table 2 reports similar results for the linear scale model. In most respects the results are
quite similar to those for the iid error table. Notably, the uniform coverage performance of
the rqss bands is somewhat better for these models.

Our tentative conclusion from this exercise is that both the accuracy of the rqss estimator
and its associated confidence bands are quite respectable, at least in comparison with the
penalized least squares estimators represented by the gam estimator and its associated
bands. In the final section of the paper we will illustrate our proposed methods on a more
challenging empirical example involving several additive components in a model of risk
factors for childhood malnutrition.

6.1. Lasso selection of linear covariates. We now complicate the foregoing simulation
setup by introducing a group of additional covariates assumed to enter linearly, only a few of
which are anticipated to be “significant.” The usual “lasso” penalty is used to select these
covariates and we explore the performance of various λ selection strategies for the lasso
components and the validity of post selection inference. We maintain the same structure
for the smooth nonparametric component, but augment the model with 24 new covariates
that enter linearly. All 24 covariates are jointly Gaussian with unit variance. Six of the
covariates have non-negligible impact on the response, the remaining 18 are irrelevant. To
explore the impact of correlation among these covariates the first 12 covariates, including all
the significant ones, are equicorrelated with correlation coefficient, ρ = 0.5. The remaining
12 covariates are independent.

After considerable exploration of λ selection for the lasso component using the SIC op-
timization methods described above, it was concluded that this approach often produced
insufficient shrinkage. Given the very rough surface defined by the SIC criterion, simu-
lated annealing was employed for the optimization, but this had the additional drawback
that it was quite slow. Fortunately, an alternative λ selection for the lasso component has
been recently suggested by Belloni and Chernozhukov (2009). This approach has the added
advantage that it is computationally extremely simple and quick.
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Accuracy Pointwise Uniform Covariates
RMISE MIAE MEDF Pband Uband Pband Uband Positives Negatives

Gaussian
iid error 0.061 0.046 22.164 0.966 0.999 0.402 0.944 1.000 0.030
linear scale 0.073 0.053 20.641 0.955 0.998 0.311 0.920 0.999 0.038

t3
iid error 0.107 0.076 17.546 0.918 0.992 0.105 0.771 0.982 0.058
linear scale 0.116 0.086 17.691 0.940 0.993 0.268 0.822 0.914 0.107

t1
iid error 0.082 0.063 20.170 0.955 0.998 0.328 0.913 0.988 0.060
linear scale 0.094 0.072 18.663 0.949 0.996 0.282 0.888 0.970 0.073

χ2
3

iid error 0.127 0.097 16.273 0.926 0.993 0.159 0.783 0.908 0.090
linear scale 0.152 0.119 15.717 0.930 0.994 0.229 0.802 0.788 0.141

Table 3. Performance of Penalized Estimators and Their Confidence
Bands: With Lasso Covariate Selection

To motivate this alternative approach to λ selection, let

Rτ (b) =
n∑
i=1

ρτ (yi − x>i b)

and consider minimizing,
Rτ (b) + λ‖b‖1.

At a solution, β̂, we have the subgradient condition,

0 ∈ ∂Rτ (β̂) + λ∂‖β̂‖1.

At β = β0(τ), the true parameter vector, we have

∂Rτ (β0(τ)) =
n∑
i=1

(τ − I(yi ≤ x>i β0(τ)))xi =
n∑
i=1

(τ − I(Fi(yi) ≤ τ))xi

a random vector whose distribution is easily simulated by replacing Fi(yi) by random uni-
forms. The subgradient of the `1-norm, ‖ · ‖1, is an element of the p-dimensional cube
[−1, 1]p. Thus, simulating realizations of the random vector

Sn =
n∑
i=1

(τ − I(Ui ≤ τ))xi

we can assert that the event ‖Sn‖∞ ≤ λ should hold with high probability, provided of
course that λ is chosen sensibly so that β̂ is close to β0(τ). Belloni and Chernozhukov
(2009) propose choosing λ̂ as a (1− α) quantile of the simulated distribution of ‖Sn‖∞, or
perhaps a constant multiple of such a quantile for some c ∈ (1, 2]. In what follows we adopt
a näıve version of this proposal with α = 0.05 and c = 1. See Belloni and Chernozhukov
(2009) for a much more thorough discussion of the rationale for this approach including
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proofs of its asymptotic optimality. For the remaining simulations we maintain the one-
dimensional SIC optimization for the choice of the λ for the smooth component g. This is
done primarily to ensure comparability with the preceding results.

Table 3 reports results of a new experiment using the same models as in the earlier tables,
but now augmented by the 24 linear covariates and the lasso penalty. For these simulations
the coefficients on the first six covariates was set to 0.1. The first seven columns of the table
provide comparable information to that found in the earlier tables for the performance of
the estimates of the smooth component, g, and its confidence bands. We see some loss
of efficiency in the RMISE and MAIE estimates, hardly surprising given the burden of
estimating a considerably larger model. The effective degrees of freedom of the newly
estimated models are roughly increased by six in the Gaussian and Cauchy cases, which
would seem to bode well for the model selection strategy of the lasso. Performance of the
confidence bands is also still quite good, although the uniform bands are somewhat less
accurate for the t3 and χ2

3 cases.
The last two columns of the table report the observed frequency, in the 1000 trials of the

experiment, that the six covariates with non-zero coefficients are selected (“positives”), and
that (“negatives”) the six correlated covariates were selected. The remaining 12 uncorre-
lated covariates were selected in less than 0.01 percent of cases. Except for the χ2

3 setting the
selection is quite good: all six important covariates are selected with high probability, and
the covariates with zero coefficients are rarely selected. It should be noted that “selected”
in the present context means that, given the chosen λ’s, conventional inference employing
standard errors from the estimated matrix, V of (4.1) yields p-values less than 0.05.

As in other applications of the lasso, there is a temptation to refit the model, once the
covariate selection is done in the first phase. This yields some modest improvement in
performance, but nothing terribly unexpected. We return to this point when we address
lasso selection of parametric components of the model of malnutrition risk in the next
section.

7. Risk Factors for Childhood Malnutrition

An application motivated by a recent paper by Fenske, Kneib, and Hothorn (2008) il-
lustrates the range of the models described above. To investigate risk factors for childhood
malnutrition we consider determinants of children’s heights in India. The data comes origi-
nally from the Demographic and Health Surveys (DHS) conducted regularly in more than 75
countries; we employ a selected sample of 37,649 observations constructed similarly to the
sample used by Fenske, Kneib, and Hothorn (2008) except that we have included the num-
ber of living siblings as an additional covariate. All children in the sample are between the
ages of 0 and 5. We will consider six covariates entering as additive nonparametric effects in
addition to the response variable height: the child’s age, and months of breastfeeding, the
mother’s body mass index (bmi), her age and years of education, and the father’s years of
education. Summary statistics for these variables appear in Table 4 . There are also a large
number of discrete covariates that enter the model as parametric effects; these variables are
also summarized in Table 4. In the terminology of R categorical variables are entered as
factors, so a variable like mother’s religion that has five distinct levels accounts for 4 model
parameters. For all the binary, consumer durable variables ownership is coded as one.
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Table 4. Summary Statistics for the Response and Continuous Covariates

Variable Units Min Q1 Q2 Q3 Max
Child’s Height cm 45.00 73.60 84.10 93.20 120.00
Child’s Age months 0.00 16.00 31.00 45.00 59.00
BreastFeeding months 0.00 9.00 15.00 24.00 59.00
Mother’s BMI kg/m2 12.13 17.97 19.71 22.02 39.97
Mother’s Age years 13.00 21.00 24.00 28.00 49.00
Mother’s Ed years 0.00 0.00 5.00 9.00 21.00
Father’s Ed years 0.00 2.00 8.00 10.00 22.00
Living Children kids 1.00 2.00 2.00 3.00 13.00

Prior studies of malnutrition using data like the DHS have typically either focused on
mean height or transformed the response to binary form and analyzed the probability that
children fall below some conventional height cutoff. However, it seems more natural to
try to estimate models for some low conditional quantile of the height distribution. This
is the approach adopted by FKH, who employ boosting as a model selection device, and
the one we will employ here. It is also conventional in prior studies including FKH, to
replace the child’s height as response variable by a standardized Z-score. This variable is
called “stunting” in the DHS data and it is simply an age adjusted version of height with
age-specific location and scale adjustments.
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Variable Counts Percent
csex
male 19591 52.0
female 18058 48.0
ctwin
singlebirth 37196 98.8
twin 453 1.2
cbirthorder
1 11491 30.5
2 10714 28.5
3 6304 16.7
4 3761 10.0
5 5379 14.3
munemployed
unemployed 24002 63.8
employed 13647 36.2
mreligion
hindu 26019 69.1
muslim 6051 16.1
christian 3807 10.1
sikh 697 1.9
other 1075 2.9
mresidence
urban 13973 37.1
rural 23676 62.9

Variable Counts Percent
wealth
poorest 6630 17.6
poorer 6858 18.2
middle 7814 20.8
richer 8454 22.5
richest 7893 21.0
electricity
no 10433 27.7
yes 27216 72.3
radio
no 25351 67.3
yes 12298 32.7
television
no 19423 51.6
yes 18226 48.4
refrigerator
no 31091 82.6
yes 6558 17.4
bicycle
no 19924 52.9
yes 17725 47.1
motorcycle
no 30223 80.3
yes 7426 19.7
car
no 36285 96.4
yes 1364 3.6

In our experience this preliminary adjustment is detrimental to the estimation of the
effects of interest so we have reverted to using height itself as a response variable. The
construction of the Z-score seems to presuppose that none of the other covariates matters,
and yet this is precisely the object of the subsequent analysis. Inclusion of age as a non-
parametric effect after Z-score adjustment of the response is an admission that the original
rescaling was inadequate and needs modification in view of other covariate effects. It seems
preferable to estimate the age specific effect together with the other covariate effects in
one step. Delbaere et. al. (2007) argue against using a similar Z-score adjustment of
birthweights for gestational age.

The R specification of the model to be estimated is given by

f <- rqss(height~ qss(cage,lambda = lam[1]) + qss(mage, lambda = lam[2]) +
qss(bfed,lambda = lam[3]) + qss(mbmi, lambda = lam[4]) +
qss(medu, lambda = lam[5]) + qss(fedu, lambda = lam[6]) +
qss(livingchildren, lambda = lam[7]) + csex + ctwin + cbirthorder +
munemployed + mreligion + mresidence + wealth + electricity + radio +
television + refrigerator + bicycle + motorcycle + car, tau = .10,
method = "lasso", lambda = lam[8], data = india)
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The formula given as the first argument specifies each of the seven non-parametric
“smooth” terms. In the present instance each of these is univariate, each requires spec-
ification of a λ determining its degree of smoothness. The remaining terms in the formula
are specified as is conventional in other R linear model fitting functions. The argument tau
specifies the quantile of interest and data specifies the dataframe within which all of the
formula variables are defined. The method = "lasso" indicates that a lasso penalty should
be imposed on the linear covariate effects with lam[8] specified as the lasso value of λ.

Optimizing SIC(λ) over λ ∈ R8
+ is a difficult task. Since children’s heights are reported

only to the nearest millimeter, we begin by “dithering” the response, randomly perturbing
values by adding an uniformly distributed half-millimeter “noise” U [−0.05, 0.05]. This
ensures that fitted quantile regression models avoid degenerate solutions involving “tied”
responses. Such solutions are dangerous from a model selection standpoint because they may
misrepresent the model dimension when counting zero residuals. A prudent optimization
strategy would seem to be to explore the space of λ’s informally, trying to narrow the region
of optimization and then resort to some form of global optimizer to further narrow the
selection. Initial exploration was conducted by considering all of the continuous covariate
effects excluding the child’s age as a group, and examining one dimensional grids for λ’s for
this group, for the child’s age, and the lasso λ individually. Preliminary experiments using
simulated annealing yielded λ’s for the ĝ terms of the model of {16, 67, 78, 85, 78, 82, 80}.
Age of the child, representing the usual growth curve, required considerably more flexibility
than the other effects and therefore received a smaller λ. The choice of the λ parameter
for the lasso contribution of the model posed a more difficult challenge. Preliminary SIC
optimization for this parameter produced quite small values that failed to zero out more
than one or two of the remaining 24 coefficients. Choosing the lasso λ as described in
the previous section with c = 1 and α = 0.05, according the proposal of Belloni and
Chernozhukov (2009), yielded λ = 237. This choice had the effect of zeroing out all but
three of the covariates. Given this feast-or-famine disparity it is tempting to consider an
intermediate values as an alternative.

In Table 5 we report estimated coefficients and their standard errors for several models
corresponding to different values of the lasso λ. The first column reports results for the
unconstrained model with no lasso shrinkage. The last column is based on the λ = 237
value as selected in the simulations, the column headed λ = 146 corresponds to the median
value of the simulated reference distribution for λ, and λ = 60 corresponds roughly the
lower support point of the reference distribution. To compare the resulting four versions of
the fitted model we fix the λ selections for the smooth g components, selected covariates are
then identified for each value of the lasso λ, and finally, the model is reestimated without
any lasso shrinkage with only the selected covariates.

Some of results are unsurprising: girls tend to be shorter than boys by a little more than
a centimeter, but other results are puzzling. Covariates that are quite strongly significant
in the unconstrained (λ = 0) version of the model like birth order of the child or the family
wealth variables do not necessarily survive the lasso shrinkage. Birth order is particularly
intriguing; having already conditioned on the number of children we see a strong monotone
relationship indicating that children later in the birth order are shorter than their older sib-
lings. Despite the highly significant nature of these unconstrained estimates these coefficient
succumb early on to the pressure applied by the lasso. Curiously, the household durable
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Covariate λ = 0 λ = 60 λ = 146 λ = 237
Intercept 43.017

(0.605)
43.469
(0.570)

43.731
(0.522)

43.476
(0.520)

Female −1.434
(0.085)

−1.427
(0.086)

−1.416
(0.087)

−1.401
(0.087)

Twin −0.874
(0.360)

- - -

Birth2 −0.824
(0.124)

−0.230
(0.099)

- -

Birth3 −1.085
(0.178)

- - -

Birth4 −1.460
(0.242)

- - -

Birth5 −2.037
(0.314)

−0.689
(0.187)

- -

M-Unemployed 0.093
(0.094)

- - -

M-Muslim −0.049
(0.128)

- - -

M-Christian 0.392
(0.156)

0.533
(0.152)

- -

M-Sikh 0.020
(0.362)

- - -

M-other −0.328
(0.223)

- - -

M-Rural 0.234
(0.105)

- - -

Poorer 0.436
(0.153)

- - -

Middle 0.840
(0.171)

0.518
(0.138)

- -

Richer 1.145
(0.201)

0.707
(0.162)

- -

Richest 1.752
(0.256)

1.295
(0.220)

0.846
(0.139)

-

Electricity 0.203
(0.132)

0.279
(0.132)

0.566
(0.122)

0.566
(0.119)

Radio 0.025
(0.098)

0.105
(0.097)

- -

TV 0.153
(0.122)

0.193
(0.122)

0.350
(0.119)

0.462
(0.113)

Fridge 0.114
(0.152)

0.156
(0.154)

- -

Bicycle 0.459
(0.090)

0.443
(0.091)

0.396
(0.089)

0.372
(0.089)

Motorcycle 0.163
(0.134)

0.246
(0.133)

- -

Car 0.566
(0.232)

- - -

Table 5. Linear Covariate Estimates with Standard Errors for Several
Lasso Selected Models
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Figure 2. Estimated Smooth Components of the Malnutrition Model
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ownership variables, none of which look particularly promising at λ = 0, are more successful
withstanding the lasso shrinkage. From both a substantive and a methodological perspec-
tive, the lasso performance for this application is somewhat disappointing. Obviously, we
are still entitled to some skepticism about the “automatic” nature of recent innovations in
model selection.

Figure 2 shows the estimated effects for the seven continuous covariates and their as-
sociated confidence bands. As in the earlier plot the darker band is the pointwise 0.95
band, and the lighter band represents the 0.95 uniform band constructed with the Hotelling
tube procedure. Clearly the effect of age and the associated growth curve is quite precisely
estimated, but the remaining effects show considerably more uncertainty. Mother’s BMI
has a positive effect up to about 30 and declines after that, similarly breastfeeding ap-
pears advantageous up until about 28 months, and then declines somewhat. Breastfeeding
beyond 28 months is apparently quite common in India; in our DHS sample roughly 30
percent of children older than 28 months were reported to have been breastfed beyond 28
months. The other effects are essentially linear given the selected λ’s for these additive
model components.

7.1. Comparison with Results from Boosting. Several difficulties inhibit a detailed
comparison of the foregoing results with the boosting results for similar models by Fenske,
Kneib, and Hothorn (2008) that originally motivated this research. There is a slight dif-
ference in the selected samples, attributable to our desire to include the number of living
children in each household as an additional covariate. FKH’s full sample is 37,623 while
ours is 37,649. More significantly, FKH used a random two-thirds of the sample for esti-
mation and the remaining one-third for determining the optimal stopping iteration of the
boosting algorithm. Even more crucially, FKH used the age-adjusted Z-score for height as
the response variable, while we used height directly. These differences make comparison of
the smooth components particularly tricky since the scaling of covariate effects is strongly
influenced by the Z-score rescaling. Thus, we confine our comparisons to qualitative features
of the estimates of the smooth nonparametric components. The boosting estimates of the
effects of mother’s BMI, and months of breastfeeding are quite similar to those seen in our
Figure 2, very mildly increasing and then decreasing about midway over the range of the
covariate. Likewise, mother’s years of education has an approximately linear effect, while
father’s education is essentially negligible. Mother’s age has a monotone increasing effect
in the the additive model estimates, with an initial slope slightly larger than the slope after
age 23. In contrast the boosting estimate exhibits a much steaper slope in the ages 15 to
23.

Turning to the comparison of the effects of the discrete covariates, the boosting estimates
exhibit the same monotone decreasing pattern for birth order that we remarked upon earlier
for the additive model estimates. Children later in the birth order are shorter than their
older siblings, at least if we focus on the first conditional decile. Without adjustment for the
number of siblings the interpretation of the birth order effect is ambiguous, but results for
the additive model specification have shown that the birth order effects persist even when
the number of siblings is accounted for. Higher household economic status, not surprisingly
yields taller children as for the additive model estimates, and girls are shorter than boys.
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None of the durable ownership variables produce large boosting effects with the exception
of bicycle ownership; this too is consistent with the additive model results.

Perhaps a more telling comparison of the boosting and the additive model approaches
lies in their model selection results. Fenske, Kneib, and Hothorn (2008) report in their
Table 5 the proportion of iterations in which each variable is selected by the boosting
algorithm. For τ = 0.1 none of these proportions are terribly impressive: age of the child
is strongest achieving 0.272, but recall that this is after the Z-score adjustment. Curiously,
the next strongest boosting effect is father’s education at 0.137 even though the magnitude
of the estimated effect is tiny. Gender of the child, which is the only really consistent effect
after lasso shrinkage of the additive model is a weak performer in the boosting competition
appearing in only 0.019 of the iterations. Mother’s BMI, age and months of breastfeeding
perform somewhat better with proportions 0.064, 0.092, and 0.091 respectively. Electricity
and TV ownership almost never appear in the boosting results while on the contrary they
are two of only four discrete effects left standing after the most severe lasso shrinkage.

An advantage of the additive model framework, as we have tried to argue above, lies in
the ability to construct confidence bands and other inferential procedures. This appears
to be a more difficult task for boosting and related approaches. Of course, the validity of
post model selection inference always merits some healthy skepticism. Only through further
comparison of methods in related empirical circumstances can we build confidence in their
validity.

8. Conclusion

Post-selection model inference involves many delicate issues as recent work by Pötscher
and Leeb (2009) has stressed. Reliable confidence bands for nonparametric additive com-
ponents constitutes one important aspect of this general challenge. Hotelling’s (1939) tubes
seem to offer a viable approach to confidence bands for additive quantile regression models
provided λ selection is done judiciously. Simulation evidence suggests that the asymptotic
approximations required to justify use of the Hotelling tube approach are at least as success-
ful in the rqss context as they were for earlier proposals designed for gam fitting. We have
also seen that the ubiquitous `1 lasso penalty can be adapted for selection of parametric
components in these models. Doubtless, further work will yield new refinements, but some
progress can be recognized. All of the methods described above have been implemented
for the R package quantreg, (Koenker (2010)), I hope that this will encourage others to
explore these methods.
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