/*---------------------------------------------------------------------------* * * cmm.cpp: This module implements the PoSSo Customisable Memory Manager * (CMM). CMM provides garbage collected storage for C++ programs. * date: 3 January 1995 * authors: Giuseppe Attardi and Tito Flagella * email: cmm@di.unipi.it * address: Dipartimento di Informatica * Corso Italia 40 * I-56125 Pisa, Italy * * Copyright (C) 1990 Digital Equipment Corporation. * Copyright (C) 1993, 1994, 1995, 1996 Giuseppe Attardi and Tito Flagella. * * Permission to use, copy, and modify this software and its documentation is * hereby granted only under the following terms and conditions. Both the * above copyright notice and this permission notice must appear in all copies * of the software, derivative works or modified versions, and any portions * thereof, and both notices must appear in supporting documentation. * * Users of this software agree to the terms and conditions set forth herein, * and agree to license at no charge to all parties under these terms and * conditions any derivative works or modified versions of this software. * * This software may be distributed (but not offered for sale or transferred * for compensation) to third parties, provided such third parties agree to * abide by the terms and conditions of this notice. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE COPYRIGHT HOLDERS DISCLAIM ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE COPYRIGHT HOLDERS * BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR * ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------* * * The technique of the CMM is described in: * * G. Attardi and T. Flagella ``A customisable memory management * framework'', Proceedings of USENIX C++ Conference 1994, Cambridge, * Massachusetts, April 1994. * * The implementation is derived from the code of the "mostly-copying" garbage * collection algorithm, by Joel Bartlett, of Digital Equipment Corporation. * *---------------------------------------------------------------------------*/ #include "cmm.h" #include /* Version tag */ char* Cmm::version = "CMM 1.9"; /*---------------------------------------------------------------------------* * * -- Garbage Collected Heap Definitions * * The heap consists of a discontiguous set of pages of memory, where each * page is bytesPerPage long. N.B. the page size for garbage collection is * independent of the processor's virtual memory page size. *---------------------------------------------------------------------------*/ static int totalPages; /* # of pages in the heap = freePages + Cmm::theDefaultHeap.reservedPages + Cmm::theMSHeap.reservedPages + reservedPages in other heaps */ static int heapSpanPages; /* # of pages that span the heap */ int freePages; /* # of pages not yet allocated */ static int freeWords = 0; /* # words left on the current page */ static Ptr *firstFreeWord; /* Ptr to the first free word on the current page */ Page firstFreePage; /* First possible free page */ static Page queueHead; /* Head of list of stable set of pages */ static Page queueTail; /* Tail of list of stable set of pages */ Page firstHeapPage; /* Page # of first heap page */ Page lastHeapPage; /* Page # of last heap page */ Word *objectMap; /* Bitmap of objects */ #if !HEADER_SIZE || defined(MARKING) Word *liveMap; /* Bitmap of live objects */ #endif Page *pageLink; /* Page link for each page */ short *pageSpace; /* Space number for each page */ short *pageGroup; /* Size of group of pages */ CmmHeap **pageHeap; /* Heap to which each page belongs */ short fromSpace; /* Space id for FromSpace */ static short nextSpace; /* which space to use: normally FromSpace, StableSpace within collect(). */ int tablePages; /* # of pages used by tables */ static Page firstTablePage; /* index of first page used by table */ /*----------------------------------------------------------------------* * -- Page spaces *----------------------------------------------------------------------*/ #define inStableSpace(page) (pageSpace[page] == STABLESPACE) #define inFromSpace(page) (pageSpace[page] == fromSpace) #define inFreeSpace(page) (UNALLOCATEDSPACE <= pageSpace[page] \ && pageSpace[page] < fromSpace) #define STABLESPACE 0 #define UNALLOCATEDSPACE 2 /* neither FromSpace nor StableSpace */ #ifdef MARKING # define SCANNEDSPACE 1 /* stable page already scanned by collect*/ # define SET_SCANNED(page) (pageSpace[page] = SCANNEDSPACE) # define SCANNED(page) (pageSpace[page] == SCANNEDSPACE) #endif /*---------------------------------------------------------------------------* * * Groups of pages used for objects spanning multiple pages, are dealt * as follows: * * The first page p0 in a group contains the number n of pages in the group, * each of the following pages contains the offset from the first page: * pageGroup[p0] = n * pageGroup[p0+1] = -1 * pageGroup[p0+n-1] = 1-n * Given a page p, we can compute the first page by p+pageGroup[p] if * pageGroup[p] < 0, otherwise p. * *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------* When MARKING is defined, traverse() is applied only to marked objects in StableSpace. As a consequence, scavenge() may need to apply traverse() recursively. The collection algorithm is as follows: 1) Clear the liveMap. 2) Examine the roots and promote the pages to which they point, adding them to StableSpace. Any reachable object is marked as live by setting its bit in the "liveMap" bitmap. 3) Scan the pages in StableSpace, traversing all objects marked as live. Traverse applies scavenge() to any location within the object containing a pointer p. scavenge() does: - if p points outside any collected heap: do nothing; - if p points to an object in another heap: traverse such object; - if p points into a non promoted page: if *p is not marked live, mark it, copy it, set the forwarding pointer; update p to the forwarding pointer. - if p points into a promoted page and *p is not marked live: mark it and, if the page has not been scanned yet, traverse it. To distinguish scanned pages, collect() sets their pageSpace to SCANNED; at the end of collection the pageSpace is set back to StableSpace. Note that objects are copied into pages in StableSpace, which are scanned sequentially. Copied objects will be traversed when their page will be scanned. *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------* * * -- Exported Interface Definitions * *---------------------------------------------------------------------------*/ int Cmm::verbose = 0; /* controls amount of printout */ /* Actual heap configuration */ int Cmm::minHeap = CMM_MINHEAP; /* # of bytes of initial heap */ int Cmm::maxHeap = CMM_MAXHEAP; /* # of bytes of the final heap */ int Cmm::incHeap = CMM_INCHEAP; /* # of bytes of each increment */ int Cmm::gcThreshold = CMM_GCTHRESHOLD; /* grow w/out GC till this size */ int Cmm::generational = CMM_GENERATIONAL; /* % allocated to force total collection */ int Cmm::incPercent = CMM_INCPERCENT; /* % allocated to force expansion */ int Cmm::flags = CMM_FLAGS; /* option flags */ bool Cmm::defaults = true; /* default setting in force */ bool Cmm::created = false; /* boolean indicating heap created */ /* * An instance of the type Cmm is created to configure the size of the * initial heap, the expansion increment, the maximum size of the heap, * the allocation percentage to force a total collection, the allocation * percentage to force heap expansion, and garbage collection options. */ Cmm::Cmm(int newMinHeap, int newMaxHeap, int newIncHeap, int newGenerational, int newIncPercent, int newGcThreshold, int newFlags, int newVerbose) { if (!created && newMinHeap > 0 && (defaults || newMaxHeap >= maxHeap)) { defaults = false; minHeap = newMinHeap; maxHeap = newMaxHeap; incHeap = newIncHeap; generational = newGenerational; incPercent = newIncPercent; minHeap = MAX(minHeap, 4*bytesPerPage); maxHeap = MAX(maxHeap, minHeap); if (generational < 0 || generational > 50) generational = CMM_GENERATIONAL; if (incPercent < 0 || incPercent > 50) incPercent = CMM_INCPERCENT; } if (created && minHeap > 0 && (defaults || newMaxHeap >= maxHeap)) { defaults = false; if (getenv("CMM_MAXHEAP") == NULL) maxHeap = newMaxHeap; if (getenv("CMM_INCHEAP") == NULL) incHeap = newIncHeap; if (getenv("CMM_GENERATIONAL") == NULL) generational = newGenerational; if (getenv("CMM_INCPERCENT") == NULL) incPercent = newIncPercent; minHeap = MAX(minHeap, 4*bytesPerPage); maxHeap = MAX(maxHeap, minHeap); if (generational < 0 || generational > 50) generational = CMM_GENERATIONAL; if (incPercent < 0 || incPercent > 50) incPercent = CMM_INCPERCENT; } // ensure max n. of pages will fit in a Page: if (sizeof(Word) > sizeof(Page)) maxHeap = MIN(maxHeap, (unsigned)~0 * bytesPerPage); gcThreshold = newGcThreshold; flags |= newFlags; verbose |= newVerbose; } /* * Freespace objects have a tag of 0. * Pad objects for double alignment have a tag of 1. * CmmObjects have a tag of 2. * The header for a one-word double alignment pad is kept in doublepad. */ #define OBJECT_TAG 2 #if HEADER_SIZE static int freeSpaceTag = MAKE_TAG(0); # ifdef DOUBLE_ALIGN static Ptr doublepad = MAKE_HEADER(1, MAKE_TAG(1)); #define HEADER_ALIGN(firstFreeWord, freeWords) \ if ((freeWords & 1) == 0 && freeWords) { \ *firstFreeWord++ = doublepad; \ freeWords--; \ } # endif // DOUBLE_ALIGN #endif // HEADER_SIZE #ifdef DOUBLE_ALIGN #define maxSizePerPage (wordsPerPage-HEADER_SIZE) #else #define maxSizePerPage wordsPerPage #endif /*---------------------------------------------------------------------------* * * -- Library initialization * *---------------------------------------------------------------------------*/ // Declaring a static variable of type _CmmInit here ensures that the _CmmInit // constructor is called before main(). static _CmmInit _DummyCmmInit; /*---------------------------------------------------------------------------* * * -- Roots * * Roots explicitely registered with the garbage collector are contained in * the following structure, allocated from the non-garbage collected heap. * *---------------------------------------------------------------------------*/ typedef struct { GCP addr; /* Address of the roots */ int bytes; /* Number of bytes in the roots */ } RootArea; class RootAreas { public: RootAreas() { last = 0; max = 0; freed = 0; entries = NULL; } void insert(void * addr, int bytes) { # define setIncrement 10 int i; if (freed) { for (i = 0; i < last; i++) if (entries[i].addr == NULL) { freed--; break; } } else { if (last == max) { RootArea *np; max += setIncrement; np = ::new RootArea[max]; for (i = 0; i < last; i++) np[i] = entries[i]; // clear the rest for (; i < max; i++) np[i].addr = NULL; if (entries) ::delete entries; entries = np; } i = last++; } entries[i].addr = (GCP)addr; entries[i].bytes = bytes; } void erase(void* addr) { int i; for (i = 0; i < last; i++) if (entries[i].addr == addr) { entries[i].addr = NULL; freed++; return; } } RootArea* get() { // look for a non empty entry while (iter < last) { if (entries[iter].addr) return &entries[iter++]; else iter++; } // No more entries; return (RootArea*)NULL; } void begin() { iter = 0; } private: RootArea* entries; int last; int max; int freed; int iter; }; static RootAreas roots; // areas registered as containing roots /*---------------------------------------------------------------------------* * -- registerRootArea() * * Areas of memory containing roots are "registered" with the garbage * collector by the following procedure. * *---------------------------------------------------------------------------*/ void registerRootArea(void * addr, int bytes) { roots.insert(addr, bytes); } void unregisterRootArea(void* addr) { roots.erase(addr); } /*---------------------------------------------------------------------------* * -- environmentValue * * Get heap configuration information from the environment. * * Results: true if the value is provided, value in value. * *---------------------------------------------------------------------------*/ static bool environmentValue(char *name, int &value) { char* valuestring = getenv(name); if (valuestring != NULL) { value = atoi(valuestring); return true; } else return false; } #if !HEADER_SIZE /* * Go forward until next object, return the size in words. */ int CmmObject::words() { register int length = 1; register int index = WORD_INDEX(this+1); int shift = BIT_INDEX(this+1); register Word bits = objectMap[index] >> shift; register int inner = bitsPerWord - shift; Page nextPage = GCPtoPage(this); nextPage += pageGroup[nextPage]; int max = ((Word)pageToGCP(nextPage) - (Word)this) / (bitsPerWord * bytesPerWord); do { do { if (bits & 1) return length; bits = bits >> 1; length++; } while (--inner); bits = objectMap[++index]; inner = bitsPerWord; } while (max--); /* we fall out here when this is last object on page */ return (CmmObject *)pageToGCP(nextPage) - this; } /* Version using ffs. * Counts the number of consecutive 1's in objectMap, which encode * half the number of words of the object. * We assume that object are an even number of words. * * int words() * { * int length = 0, bits, * index = WORD_INDEX(this), * shift = BIT_INDEX(this); * * while (true) { * bits = (Word)objectMap[index] >> shift; * inc = ffs(~bits) - 1; * if (inc < 0) inc = bitsPerWord; * if (inc == (bitsPerWord - shift)) break; * length += inc; * index++; * shift = 0; * } * return 2*length; *} * * A setobjectMap which goes with this is: * *setobjectMap(GCP p, int size) *{ * int index = WORD_INDEX(p), * shift = BIT_INDEX(p); * size = size / 2; * while (true) { * count = size % (bitsPerWord - shift); * objectMap[index] |= (1 << count) - 1; * size -= count; * if (size == 0) break; * index++; * shift = 0; * } *} */ #endif /*---------------------------------------------------------------------------* * * -- Initialization * *---------------------------------------------------------------------------*/ #if !HEADER_SIZE /* * An object of this class is used to fill free portion of page. */ class GcFreeObject: public CmmObject { void traverse() {} int words() { return wordsPerPage; } }; static GcFreeObject *aGcFreeObject; # ifdef DOUBLE_ALIGN_OPTIMIZE /*---------------------------------------------------------------------------* * An object of this class is used for padding. *---------------------------------------------------------------------------*/ class GcPadObject: public CmmObject { void traverse() {} int words() { return 1; } }; static GcPadObject *aGcPadObject; # endif #endif // HEADER_SIZE DefaultHeap *Cmm::theDefaultHeap; UncollectedHeap *Cmm::theUncollectedHeap; CmmHeap *Cmm::theMSHeap; CmmHeap *Cmm::heap; // used during initialization of objects: static CmmObject *aCmmObject; static CmmVarObject *aCmmVarObject; void CmmInitEarly() { int i; if (stackBottom == 0) { CmmSetStackBottom((Word)&i); # ifndef _WIN32 /* Determine start of system heap */ globalHeapStart = sbrk(0); # endif } } DefaultHeap::DefaultHeap() { usedPages = 0; stablePages = 0; } /*---------------------------------------------------------------------------* * -- CmmInit * * The heap is allocated and the appropriate data structures are initialized * by the following function. It is called the first time any storage is * allocated from the heap. * *---------------------------------------------------------------------------*/ #if !HEADER_SIZE || defined(MARKING) # define tableFraction (sizeof(Page) /* pageLink */\ + sizeof(CmmHeap**) /* pageHeap */\ + sizeof(short)*2 /* pageSpace, pageGroup */\ + wordsPerPage/bitsPerWord*bytesPerWord /* objectMap */\ + wordsPerPage/bitsPerWord*bytesPerWord) /* liveMap */ #else # define tableFraction (sizeof(Page) /* pageLink */\ + sizeof(CmmHeap**) /* pageHeap */\ + sizeof(short)*2 /* pageSpace, pageGroup */\ + wordsPerPage/bitsPerWord*bytesPerWord) /* objectMap */ #endif void CmmHeap::init() { char *heap; Page i; /* Log actual heap parameters if from environment or logging */ if ((environmentValue("CMM_MINHEAP", Cmm::minHeap) | environmentValue("CMM_MAXHEAP", Cmm::maxHeap) | environmentValue("CMM_INCHEAP", Cmm::incHeap) | environmentValue("CMM_GENERATIONAL", Cmm::generational) | environmentValue("CMM_INCPERCENT", Cmm::incPercent) | environmentValue("CMM_GCTHRESHOLD", Cmm::gcThreshold) | environmentValue("CMM_FLAGS", Cmm::flags) | environmentValue("CMM_VERBOSE", Cmm::verbose)) || Cmm::verbose) fprintf(stderr, "***** Cmm(%d, %d, %d, %d, %d, %d, %d, %d)\n", Cmm::minHeap, Cmm::maxHeap, Cmm::incHeap, Cmm::generational, Cmm::incPercent, Cmm::gcThreshold, Cmm::flags, Cmm::verbose); /* Allocate heap and side tables. Exit on allocation failure. */ heapSpanPages = totalPages = (Cmm::minHeap + bytesPerPage - 1)/bytesPerPage; tablePages = (totalPages*tableFraction + bytesPerPage - 1) / bytesPerPage; /* Allocate one block for both the heap and the tables. * The tables will be recycled into pages at the next collection. */ heap = ::new char[(totalPages + tablePages) * bytesPerPage + bytesPerPage - 1]; if (heap == NULL) { fprintf(stderr, "\n****** CMM Unable to allocate %d byte heap\n", Cmm::minHeap); abort(); } #ifdef _WIN32 globalHeapStart = heap; #endif heap = heap + bytesPerPage - 1; heap -= (Word)heap % bytesPerPage; firstHeapPage = GCPtoPage(heap); lastHeapPage = firstHeapPage + heapSpanPages - 1; firstTablePage = lastHeapPage + 1; freePages = totalPages; pageSpace = (short *)pageToGCP(firstTablePage); pageGroup = &pageSpace[totalPages]; pageLink = (Page *)&pageGroup[totalPages]; pageHeap = (CmmHeap **)&pageLink[totalPages]; objectMap = (Word *)&pageHeap[totalPages]; # if !HEADER_SIZE || defined(MARKING) liveMap = (Word *)&objectMap[totalPages*wordsPerPage/bitsPerWord]; # endif /* The following definitions are safe because these vectors are accessed only through an address within a page. Instead of using pageSpace[addr - firstHeapPage] space is displaced by firstHeapPage so that we can use: pageSpace[addr] */ pageSpace = pageSpace - firstHeapPage; pageLink = pageLink - firstHeapPage; pageGroup = pageGroup - firstHeapPage; pageHeap = pageHeap - firstHeapPage; objectMap = objectMap - WORD_INDEX(firstHeapPage*bytesPerPage); # if !HEADER_SIZE || defined(MARKING) liveMap = liveMap - WORD_INDEX(firstHeapPage*bytesPerPage); # endif /* Initialize tables */ for (i = firstHeapPage ; i <= lastHeapPage ; i++) pageHeap[i] = NOHEAP; fromSpace = UNALLOCATEDSPACE + 1; nextSpace = fromSpace; firstFreePage = firstHeapPage; queueHead = 0; Cmm::created = true; Cmm::theDefaultHeap->usedPages = 0; Cmm::theDefaultHeap->stablePages = 0; Cmm::theDefaultHeap->firstUnusedPage = firstHeapPage; Cmm::theDefaultHeap->firstReservedPage= firstHeapPage; Cmm::theDefaultHeap->lastReservedPage = firstHeapPage; # if !HEADER_SIZE aGcFreeObject = ::new GcFreeObject; # ifdef DOUBLE_ALIGN_OPTIMIZE aGcPadObject = ::new GcPadObject; # endif # endif // The following initializations are needed by the CmmObject::new // operator. For this reason they don't use new, but ::new. aCmmObject = ::new CmmObject; aCmmVarObject = ::new CmmVarObject; } /*---------------------------------------------------------------------------* * -- shouldExpandHeap * * Once the heap has been allocated, it is automatically expanded after garbage * collection until the maximum size is reached. If space cannot be allocated * to expand the heap, then the heap will be left at its current size and no * further expansions will be attempted. * * Results: true when the heap should be expanded. * *---------------------------------------------------------------------------*/ static bool shouldExpandHeap() { return (HEAPPERCENT(Cmm::theDefaultHeap->usedPages) >= Cmm::incPercent && totalPages < (int)(Cmm::maxHeap/bytesPerPage) && Cmm::incHeap != 0); } static bool expandFailed = false; #ifndef _WIN32 static void (*savedNewHandler)(); static void dummyNewHandler() { } #endif /*---------------------------------------------------------------------------* * -- expandHeap * * Expands the heap by Cmm::incHeap. * * Results: number of first new page allocated, 0 on failure * *---------------------------------------------------------------------------*/ #define distant(x, y) (abs(x - y) > 1000) static int expandHeap(int increment) { int inc_totalPages = increment/bytesPerPage; Page new_firstHeapPage; Page inc_firstHeapPage; Page new_lastHeapPage; Page inc_lastHeapPage; int new_totalPages; Page *new_pageLink; Word *new_objectMap; # if !HEADER_SIZE || defined(MARKING) Word *new_liveMap; # endif Page i; short *new_pageSpace; short *new_pageGroup; CmmHeap **new_pageHeap; char *new_tables; int new_tablePages; char *inc_heap; bool recycleOldTables = true; /* Check for previous expansion failure */ if (expandFailed) return 0; Page lastTablePage = firstTablePage + tablePages - 1; /* Allocate additional heap and determine page span */ #ifndef _WIN32 /* Save the current exception handler for ::new, so we can replace it with a dummy one in order to be notified of failure */ savedNewHandler = set_new_handler(dummyNewHandler); #endif inc_heap = ::new char[inc_totalPages*bytesPerPage + bytesPerPage - 1]; if (inc_heap == NULL) goto fail; inc_heap = inc_heap + bytesPerPage - 1; inc_heap -= (Word)inc_heap % bytesPerPage; inc_firstHeapPage = GCPtoPage(inc_heap); inc_lastHeapPage = inc_firstHeapPage + inc_totalPages - 1; new_firstHeapPage = MIN(firstHeapPage, inc_firstHeapPage); new_lastHeapPage = MAX(lastHeapPage, inc_lastHeapPage); /* Sometimes malloc() (e.g. on Linux ELF) allocates small blocks at * quite distant addresses from large blocks. In this case tablePages * would be huge, to encompass the gap between the blocks. * Therefore we don't recycle them. */ if (distant(lastHeapPage, firstTablePage) && distant(lastTablePage, firstHeapPage)) recycleOldTables = false; if (recycleOldTables) { new_firstHeapPage = MIN(new_firstHeapPage, firstTablePage); new_lastHeapPage = MAX(new_lastHeapPage, firstTablePage + tablePages - 1); } new_totalPages = totalPages + tablePages + inc_totalPages; heapSpanPages = new_lastHeapPage - new_firstHeapPage + 1; new_tablePages = (heapSpanPages*tableFraction + bytesPerPage - 1) / bytesPerPage; new_tables = ::new char[new_tablePages*bytesPerPage + bytesPerPage - 1]; if (new_tables == NULL) { fail: # ifndef _WIN32 set_new_handler(savedNewHandler); # endif if (inc_heap) ::delete inc_heap; expandFailed = true; WHEN_VERBOSE (CMM_STATS, fprintf(stderr, "\n***** CMM Heap expansion failed\n")); return 0; } # ifndef _WIN32 set_new_handler(savedNewHandler); # endif new_pageSpace = (short *)new_tables; new_pageGroup = &new_pageSpace[heapSpanPages]; new_pageLink = (Page *)&new_pageGroup[heapSpanPages]; new_pageHeap = (CmmHeap **)&new_pageLink[heapSpanPages]; new_objectMap = (Word *)&new_pageHeap[heapSpanPages]; #if !HEADER_SIZE || defined(MARKING) new_liveMap = (Word *)&new_objectMap[heapSpanPages*wordsPerPage/bitsPerWord]; #endif new_pageSpace = new_pageSpace - new_firstHeapPage; new_pageLink = new_pageLink - new_firstHeapPage; new_pageGroup = new_pageGroup - new_firstHeapPage; new_pageHeap = new_pageHeap - new_firstHeapPage; new_objectMap = new_objectMap - WORD_INDEX(new_firstHeapPage*bytesPerPage); #if !HEADER_SIZE || defined(MARKING) new_liveMap = new_liveMap - WORD_INDEX(new_firstHeapPage*bytesPerPage); #endif /* Initialize new side tables */ for (i = inc_firstHeapPage ; i <= inc_lastHeapPage ; i++) new_pageHeap[i] = NOHEAP; for (i = firstHeapPage ; i <= lastHeapPage ; i++) { new_pageSpace[i] = pageSpace[i]; new_pageHeap[i] = pageHeap[i]; new_pageLink[i] = pageLink[i]; new_pageGroup[i] = pageGroup[i]; } for (i = WORD_INDEX(firstHeapPage*bytesPerPage); i < WORD_INDEX((lastHeapPage + 1)*bytesPerPage); i++) { new_objectMap[i] = objectMap[i]; #if !HEADER_SIZE || defined(MARKING) // necessary if expandHeap() is called during collection new_liveMap[i] = liveMap[i]; #endif } if (recycleOldTables) { /* Recycle old tables */ for (i = firstTablePage; i <= lastTablePage; i++) new_pageHeap[i] = NOHEAP; /* Fill gaps */ Page gapStart = MIN(lastTablePage, inc_lastHeapPage); Page gap1Start = MIN(lastHeapPage, gapStart); Page gapEnd = MAX(firstTablePage, inc_firstHeapPage); Page gap2End = MAX(firstHeapPage, gapEnd); Page gap1End = (gapEnd == gap2End) ? MAX(firstHeapPage, MIN(firstTablePage, inc_firstHeapPage)) : gapEnd; Page gap2Start = (gapStart == gap1Start) ? MIN(lastHeapPage, MAX(lastTablePage, inc_lastHeapPage)) : gapStart; for (i = gap1Start + 1; i < gap1End; i++) new_pageHeap[i] = UNCOLLECTEDHEAP; for (i = gap2Start + 1; i < gap2End; i++) new_pageHeap[i] = UNCOLLECTEDHEAP; } else ::delete (char *)(pageSpace + firstHeapPage); // address of old tables pageSpace = new_pageSpace; pageLink = new_pageLink; pageGroup = new_pageGroup; pageHeap = new_pageHeap; objectMap = new_objectMap; #if !HEADER_SIZE || defined(MARKING) liveMap = new_liveMap; #endif firstHeapPage = new_firstHeapPage; lastHeapPage = new_lastHeapPage; totalPages = new_totalPages; freePages += inc_totalPages + tablePages; tablePages = new_tablePages; firstTablePage = GCPtoPage(new_tables); firstFreePage = inc_firstHeapPage; WHEN_VERBOSE (CMM_STATS, fprintf(stderr, "\n***** CMM Heap expanded to %d bytes\n", totalPages * bytesPerPage)); return inc_firstHeapPage; } /*---------------------------------------------------------------------------* * -- emptyStableSpace * * Moves the pages in StableSpace into FromSpace. * A total collection is performed by calling this before calling collect(). * When generational collection is not desired, this is called after * collection to empty the StableSpace. * *---------------------------------------------------------------------------*/ static void emptyStableSpace() { Page scan; int count = 0; while (queueHead) { scan = queueHead; int pages = pageGroup[scan]; while (pages--) { pageSpace[scan++] = fromSpace; count++; } queueHead = pageLink[queueHead]; } Cmm::theDefaultHeap->stablePages -= count; } /*---------------------------------------------------------------------------* * -- queue * * Adds a page to the stable set page queue. * Invariant: all pages in StableSpace appear in queue once. *---------------------------------------------------------------------------*/ static void queue(Page page) { if (queueHead != 0) pageLink[queueTail] = page; else queueHead = page; pageLink[page] = 0; queueTail = page; } /*---------------------------------------------------------------------------* * -- promotePage * * Pages which contain locations referred from ambiguous roots are * promoted to the StableSpace. * * Note that objects that get allocated in a CONTINUED page (after a large * object) will never move. *---------------------------------------------------------------------------*/ void promotePage(GCP cp) { Word page = GCPtoPage(cp); // Word is needed for 64bit architectures // Don't promote pages belonging to other heaps. // (We noticed no benefit by inlining the following test in the caller) if (page >= firstHeapPage && page <= lastHeapPage && pageHeap[page] == Cmm::theDefaultHeap) { # ifdef MARKING CmmObject *bp = basePointer(cp); page = GCPtoPage(bp); /* bp may go out of the heap: see test3 on sparc */ if (OUTSIDE_HEAPS(page)) return; MARK(bp); # endif if (inFromSpace(page)) { int pages = pageGroup[page]; if (pages < 0) { page += pages; pages = pageGroup[page]; } WHEN_VERBOSE (CMM_DEBUGLOG, fprintf(stderr, "promoted 0x%x\n", pageToGCP(page))); queue(page); Cmm::theDefaultHeap->usedPages += pages; // in StableSpace Cmm::theDefaultHeap->stablePages += pages; while (pages--) pageSpace[page++] = STABLESPACE; } } } /*---------------------------------------------------------------------------* * -- basePointer * * Results: pointer to the beginning of the containing object *---------------------------------------------------------------------------*/ CmmObject * basePointer(GCP ip) { ip = (GCP)((Word)ip & ~(Word)(bytesPerWord-1)); register int index = WORD_INDEX(ip); register int inner = BIT_INDEX(ip); register Word mask = 1L << inner; register Word bits = objectMap[index]; do { do { if (bits & mask) return (CmmObject *)ip; mask = mask >> 1; ip--; } while (inner--); bits = objectMap[--index]; inner = bitsPerWord-1; mask = 1L << bitsPerWord-1; } while (true); } /*---------------------------------------------------------------------------* * Forward declarations: *---------------------------------------------------------------------------*/ static void verifyObject(GCP, bool); static void verifyHeader(GCP); static void newlineIfLogging(); static void logRoot(GCP); /*---------------------------------------------------------------------------* * -- DefaultHeap::move * * Copies object from FromSpace to StableSpace * * Results: pointer to header of copied object * * Side effects: firstFreeWord, freeWords, usedPages *---------------------------------------------------------------------------*/ #ifdef CMM_VERBOSE static scavengeCount = 0; #endif GCP DefaultHeap::move(GCP cp) { int page = GCPtoPage(cp); /* Page number */ GCP np; /* Pointer to the new object */ # if HEADER_SIZE Ptr header; /* Object header */ # endif /* Verify that the object is a valid pointer and decrement ptr cnt */ WHEN_FLAGS (CMM_TSTOBJ, verifyObject(cp, true); verifyHeader(cp);); /* If cell is already forwarded, return forwarding pointer */ # if HEADER_SIZE header = cp[-HEADER_SIZE]; if (FORWARDED(header)) { WHEN_FLAGS (CMM_TSTOBJ, { verifyObject((GCP)header, false); verifyHeader((GCP)header); }); return ((GCP)header); } # else if (FORWARDED(cp)) return ((GCP)*cp); # endif /* Move or promote object */ #if HEADER_SIZE register int words = HEADER_WORDS(header); #else register int words = ((CmmObject *)cp)->words(); #endif if (words >= freeWords) { /* Promote objects >= a page to StableSpace */ /* This is to avoid expandHeap(). See note about collect(). * We could perform copying during a full GC by reserving in advance * a block of pages for objects >= 1 page */ if (words >= maxSizePerPage) { promotePage(cp); return(cp); } /* Discard any partial page and allocate a new one */ // We must ensure that this does not invoke expandHeap() Cmm::theDefaultHeap->getPages(1); WHEN_VERBOSE (CMM_DEBUGLOG, fprintf(stderr, "queued 0x%x\n", firstFreeWord)); queue(GCPtoPage(firstFreeWord)); // i.e. promotePage[firstFreeWord]; Cmm::theDefaultHeap->stablePages += 1; } /* Forward object, leave forwarding pointer in old object header */ WHEN_VERBOSE (CMM_STATS, scavengeCount++;) # if HEADER_SIZE *firstFreeWord++ = header; # else GCP ocp = cp; # endif np = firstFreeWord; SET_OBJECTMAP(np); freeWords = freeWords - words; # if HEADER_SIZE cp[-HEADER_SIZE] = (Ptr)np; // lowest bit 0 means forwarded words -= HEADER_SIZE; while (words--) *firstFreeWord++ = *cp++; # ifdef HEADER_ALIGN HEADER_ALIGN(firstFreeWord, freeWords); # endif # else MARK(cp); // Necessary to recognise as forwarded while (words--) *firstFreeWord++ = *cp++; *ocp = (Word)np; # endif // !HEADER_SIZE # ifdef MARKING MARK(np); # endif return(np); } /*---------------------------------------------------------------------------* * -- DefaultHeap::scavenge * * Replaces pointer to (within) object with pointer to scavenged object * * Results: none * * Side effects: firstFreeWord, freeWords, usedPages *---------------------------------------------------------------------------*/ void DefaultHeap::scavenge(CmmObject **loc) { GCP pp = (GCP)*loc; Word page = GCPtoPage(pp); // Word needed for 64bit arch. if (!OUTSIDE_HEAPS(page)) { GCP p = (GCP)basePointer((GCP)*loc); page = GCPtoPage(p); if (inside(p)) // in this heap { if (inFromSpace(page)) // can be moved *loc = (CmmObject *)((Word)move(p) + (Word)*loc - (Word)p); # ifdef MARKING else if (!MARKED(p)) { assert(inStableSpace(page) || pageSpace[page] == SCANNEDSPACE); MARK(p); if (!(page == scanPage && p > scanPtr)) // scan optimization // it is not further in the page being scanned if (SCANNED(page) // or p was not traversed when page was scanned # if HEADER_SIZE && HEADER_TAG(p[-HEADER_SIZE]) == OBJECT_TAG # endif ) ((CmmObject *)p)->traverse(); } # endif // MARKING } else if (!OUTSIDE_HEAPS(page) // if page is OUTSIDE_HEAPS, p must be an ambiguous pointer && !pageHeap[page]->isOpaque()) visit((CmmObject *)p); } } /*---------------------------------------------------------------------------* * -- CLOSE_CURRENT_PAGE * * Fill current page, so that no more objects are allocated there. *---------------------------------------------------------------------------*/ #if HEADER_SIZE # define CLOSE_CURRENT_PAGE \ if (freeWords != 0) { \ *firstFreeWord = MAKE_HEADER(freeWords, freeSpaceTag); \ freeWords = 0; } #else # define CLOSE_CURRENT_PAGE \ if (freeWords != 0) { \ *firstFreeWord = *(GCP)aGcFreeObject; \ SET_OBJECTMAP(firstFreeWord); \ freeWords = 0; } # endif /*---------------------------------------------------------------------------* * -- DefaultHeap::collect * * Garbage collection for the DefaultHeap. It is typically * called when half the pages in the heap have been allocated. * It may also be directly called. * * Objects moved once by the collector will not be moved again * until a full collection is enabled by emptyStableSpace(). * * Side effects: fromSpace, nextSpace * * WARNING: (freePages + reservedPages - usedPages) must be > usedPages when * collect() is called to avoid the invocation of expandHeap() in the * middle of collection. *---------------------------------------------------------------------------*/ void DefaultHeap::collect() { // firstFreeWord is seen by the collector: it should not consider it a root. /* Check for heap not yet allocated */ if (!Cmm::created) { CmmHeap::init(); return; } /* Log entry to the collector */ WHEN_VERBOSE (CMM_STATS, { scavengeCount = 0; fprintf(stderr, "***** CMM Collecting - %d%% allocated -> ", HEAPPERCENT(usedPages)); newlineIfLogging(); }); // CLOSE_CURRENT_PAGE; // not needed: getPages() did it /* * Pages allocated by move() herein will belong to the StableSpace. * At the end of collect() we go back to normal. */ nextSpace = STABLESPACE; usedPages = stablePages; // start counting in StableSpace # if !HEADER_SIZE || defined(MARKING) /* Clear the liveMap bitmap */ bzero((char*)&liveMap[WORD_INDEX(firstHeapPage * bytesPerPage)], heapSpanPages * (bytesPerPage / bitsPerWord)); # endif bool totalCollection = queueHead == 0; // promote pages to StableSpace promotionPhase(); WHEN_VERBOSE (CMM_STATS, { fprintf(stderr, "%d%% promoted ", HEAPPERCENT(usedPages)); newlineIfLogging(); }); // Sweep across stable pages and move their constituent items to StableSpace compactionPhase(); WHEN_VERBOSE (CMM_STATS, fprintf(stderr, "%d%% stable.\n", HEAPPERCENT(stablePages)); fprintf(stderr, "Moved objects: %d\n", scavengeCount);); // Check for total collection and heap expansion if (Cmm::generational != 0) { /* Performing generational collection */ if (HEAPPERCENT(usedPages) >= Cmm::generational) { emptyStableSpace(); if (totalCollection) { /* Previous collection did not recover enough */ if (shouldExpandHeap()) expandHeap(Cmm::incHeap); } } } else { /* Not performing generational collection */ emptyStableSpace(); if (shouldExpandHeap()) expandHeap(Cmm::incHeap); } nextSpace = fromSpace; // resume allocating in FromSpace } /*---------------------------------------------------------------------------* * -- promotionPhase * * Scan areas which may contain ambiguous roots and promote pages into * which they point. *---------------------------------------------------------------------------*/ void DefaultHeap::promotionPhase() { /* Examine stack, registers, static area and possibly the non-garbage collected heap for possible pointers */ WHEN_VERBOSE (CMM_ROOTLOG, fprintf(stderr, "stack roots:\n")); GCP fp; /* Pointer for checking the stack */ void CmmExamineStaticArea(GCP, GCP); /* ensure flushing of register caches */ jmp_buf regs; if (_setjmp(regs) == 0) _longjmp(regs, 1); /* Examine the stack: */ # ifdef STACK_GROWS_DOWNWARD for (fp = (GCP)regs; fp < (GCP)stackBottom; fp++) # else for (fp = (GCP)regs + sizeof(regs); fp > (GCP)stackBottom; fp--) # endif { WHEN_VERBOSE (CMM_ROOTLOG, logRoot(fp)); promotePage((GCP)*fp); } /* Examine the static areas: */ WHEN_VERBOSE (CMM_ROOTLOG, fprintf(stderr, "Static and registered roots:\n")); CmmExamineStaticAreas(CmmExamineStaticArea); /* Examine registered roots: */ RootArea* ra; for (roots.begin(); ra = roots.get(); ) { fp = ra->addr; for (int j = ra->bytes; j > 0; j = j - bytesPerWord) promotePage((GCP)*fp++); } /* Examine the uncollected heap: */ /* Should scan all opaque heaps */ if (Cmm::flags & CMM_HEAPROOTS) { WHEN_VERBOSE (CMM_HEAPLOG, fprintf(stderr, "Uncollected heap roots:\n")); GCP globalHeapEnd = (GCP)getGlobalHeapEnd(); fp = (GCP)globalHeapStart; while (fp < globalHeapEnd) { if (!inside((GCP)fp)) { WHEN_VERBOSE (CMM_HEAPLOG, logRoot(fp)); promotePage((GCP)*fp); fp++; } else fp = fp + wordsPerPage; // skip page } } } void CmmExamineStaticArea(GCP base, GCP limit) { register GCP fp; for (fp = base ; fp < limit ; fp++) { WHEN_VERBOSE (CMM_ROOTLOG, logRoot(fp)); promotePage((GCP)*fp); } } /*---------------------------------------------------------------------------* * -- compactionPhase * * Copy live objects from FromSpace to StableSpace. * * Side effects: fromSpace *---------------------------------------------------------------------------*/ void DefaultHeap::compactionPhase() { GCP cp, nextcp; /* Pointers to move constituent objects */ Page page = queueHead; while (page) { # ifdef MARKING // pointers to unmarked objects within SET_SCANNED(page); // this page will have to be traversed // recursively by scavenge() scanPage = page; // scan optimization # endif cp = pageToGCP(page); WHEN_VERBOSE (CMM_DEBUGLOG, fprintf(stderr, "sweeping 0x%x\n", cp)); GCP nextPage = pageToGCP(page + 1); bool inCurrentPage = (page == (int)GCPtoPage(firstFreeWord)); nextcp = inCurrentPage ? firstFreeWord : nextPage; /* current page may get filled while we sweep it */ while (cp < nextcp || inCurrentPage && cp < (nextcp = (cp <= firstFreeWord && firstFreeWord < nextPage) ? firstFreeWord : nextPage)) { WHEN_FLAGS (CMM_TSTOBJ, verifyHeader(cp + HEADER_SIZE)); # if HEADER_SIZE if ((HEADER_TAG(*cp) == OBJECT_TAG) # ifdef MARKING && MARKED(cp + HEADER_SIZE) # endif ) { scanPtr = cp; // scan optimization ((CmmObject *)(cp + HEADER_SIZE))->traverse(); } cp = cp + HEADER_WORDS(*cp); # else # ifdef MARKING if (MARKED(cp)) # endif { scanPtr = cp; // scan optimization ((CmmObject *)cp)->traverse(); } cp = cp + ((CmmObject *)cp)->words(); # endif } page = pageLink[page]; if (cp == firstFreeWord && page) // close this page if it is the current but not the last in the // queue, otherwise new objects might get allocated here // which will not be scanned. // This may happen when current page contains pointer to large object, // whose page gets promoted and added to the queue. CLOSE_CURRENT_PAGE; } #ifdef MARKING { /* Restore scanned pages to STABLESPACE */ Page scan = queueHead; while (scan) { pageSpace[scan] = STABLESPACE; scan = pageLink[scan]; } } #endif fromSpace = fromSpace + 1; // Advance space } /*---------------------------------------------------------------------------* * -- nextPage * * Results: index of next page (wrapped at the end) * *---------------------------------------------------------------------------*/ static inline Page nextPage(Page page) { return (page == lastHeapPage) ? firstHeapPage : page + 1; } /*---------------------------------------------------------------------------* * -- allocatePages * * Page allocator. * Allocates a number of additional pages to the indicated heap. * * Results: address of first page * * Side effects: firstFreePage *---------------------------------------------------------------------------*/ GCP allocatePages(int pages, CmmHeap *heap) { int free; /* # contiguous free pages */ Page firstPage; /* Page # of first free page */ int allPages; /* # of pages in the heap */ GCP firstByte; /* address of first free page */ allPages = heapSpanPages; free = 0; firstPage = firstFreePage; while (allPages--) { if (pageHeap[firstFreePage] == NOHEAP) { if (++free == pages) goto FOUND; } else free = 0; firstFreePage = nextPage(firstFreePage); if (firstFreePage == firstHeapPage) free = 0; if (free == 0) firstPage = firstFreePage; } // Failed to allocate space, try expanding the heap. if (!Cmm::created) CmmHeap::init(); /* initialize heap, if not done yet */ // Assure that minimum increment size is sufficient for required pages. Cmm::incHeap = MAX(Cmm::incHeap, (int)(pages*bytesPerPage)); firstPage = expandHeap(Cmm::incHeap); if (firstPage == 0) { /* Can't do it */ fprintf(stderr, "\n***** allocatePages Unable to allocate %d pages\n", pages); abort(); } FOUND: // Ok, I found all needed contiguous pages. freePages -= pages; heap->reservedPages += pages; firstByte = pageToGCP(firstPage); int i = 1; while (pages--) { pageHeap[firstPage+pages] = heap; # if !HEADER_SIZE // Fake groups so that words() works also outside the DefaultHeap; pageGroup[firstPage+pages] = i++; # endif } return firstByte; } /*---------------------------------------------------------------------------* * -- DefaultHeap::getPages * * When alloc() is unable to allocate storage, it calls this routine to * allocate one or more pages. If space is not available then the garbage * collector is called and/or the heap is expanded. * Also called by move(). * * Results: address of first page * * Side effects: firstFreePage, firstFreeWord, freeWords, usedPages *---------------------------------------------------------------------------*/ #define USED2FREE_RATIO 2 GCP DefaultHeap::getPages(int pages) { Page firstPage; /* Page # of first free page */ //#define NEW_GETPAGE bad: grows valla to 29063K #ifndef NEW_GETPAGE #define USED2FREE_RATIO 2 if (nextSpace != STABLESPACE /* not within move() */ && usedPages + pages > USED2FREE_RATIO * (freePages + reservedPages - usedPages - pages)) collect(); #endif /* Discard any remaining portion of current page */ CLOSE_CURRENT_PAGE; if (reservedPages - usedPages > reservedPages / 16) // not worth looking for the last few ones dispersed through the heap { int free = 0; /* # contiguous free pages */ int allPages = lastReservedPage - firstReservedPage; firstPage = firstUnusedPage; while (allPages--) { if (pageHeap[firstUnusedPage] == this && inFreeSpace(firstUnusedPage)) { if (++free == pages) { firstFreeWord = pageToGCP(firstPage); goto FOUND; } } else { free = 0; firstPage = firstUnusedPage+1; } if (firstUnusedPage == lastReservedPage) { firstUnusedPage = firstPage = firstReservedPage; free = 0; } else firstUnusedPage++; } } { int reserved = MAX(8, pages); // get a bunch of them firstFreeWord = allocatePages(reserved, this); firstUnusedPage = firstPage = GCPtoPage(firstFreeWord); int i = firstPage + reserved - 1; lastReservedPage = MAX(lastReservedPage, (Page)i); for (i = pages; i < reserved; i++) pageSpace[firstPage + i] = UNALLOCATEDSPACE; } FOUND: // Found all needed contiguous pages. bzero((char*)firstFreeWord, pages*bytesPerPage); #ifdef HEADER_ALIGN *firstFreeWord++ = doublepad; freeWords = pages*wordsPerPage - 1; #else freeWords = pages*wordsPerPage; #endif usedPages += pages; bzero((char*)&objectMap[WORD_INDEX(firstPage*bytesPerPage)], pages*(bytesPerPage/bitsPerWord)); pageSpace[firstPage] = nextSpace; pageGroup[firstPage] = pages; int i = -1; while (--pages) { pageSpace[++firstPage] = nextSpace; pageGroup[firstPage] = i--; } return firstFreeWord; } /*---------------------------------------------------------------------------* * -- DefaultHeap::alloc * * Storage is allocated by the following function. * It is up to the specific constructor procedure to assure that all * pointer slots are correctly initialized. * * Proper alignment on architectures which require DOUBLE_ALIGN, is dealt * as follows. * - when HEADER_SIZE == 1, firstFreeWord is kept misaligned (if after * allocating an object it is not misaligned, doublepad is inserted) * - when HEADER_SIZE == 0, aGcPadObject is inserted before allocating * an object when firstFreeWord is misaligned. * For object whose size is < 4 words we can optimize space, avoiding * the padding. * * Results: pointer to the object * * Side effects: firstFreeWord, freeWords *---------------------------------------------------------------------------*/ // In principle we should collect when there are not enough pages to copy // FromSpace (usedPages - stablePages). // We guess that FromSpace will be reduced to less than 50%: #define USED2FREE_RATIO 2 #define enoughPagesLeft(pages) (usedPages + pages \ <= USED2FREE_RATIO * (freePages + reservedPages - usedPages - pages)) GCP DefaultHeap::alloc(Word size) { GCP object; /* Pointer to the object */ size = bytesToWords(size); // add size of header /* Try to allocate from current page */ if (size <= (Word)freeWords) { # if HEADER_SIZE object = firstFreeWord; freeWords = freeWords - size; firstFreeWord = firstFreeWord + size; # ifdef HEADER_ALIGN HEADER_ALIGN(firstFreeWord, freeWords); # endif # else // !HEADER_SIZE # ifdef DOUBLE_ALIGN_OPTIMIZE if (size < 16 || ((Word)firstFreeWord & 7) == 0) { # endif // DOUBLE_ALIGN_OPTIMIZE object = firstFreeWord; freeWords = freeWords - size; firstFreeWord = firstFreeWord + size; # ifdef DOUBLE_ALIGN_OPTIMIZE } else if (size <= freeWords - 1) { SET_OBJECTMAP(firstFreeWord); *firstFreeWord++ = *(GCP)aGcPadObject; object = firstFreeWord; freeWords = freeWords - size - 1; firstFreeWord = firstFreeWord + size; } # endif // DOUBLE_ALIGN_OPTIMIZE # endif // ! HEADER_SIZE } else if (size < maxSizePerPage) /* Object fits in one page with left over free space*/ { #ifdef NEW_GETPAGES if (! enoughPagesLeft(1)) collect(); #endif getPages(1); object = firstFreeWord; freeWords = freeWords - size; firstFreeWord = firstFreeWord + size; # ifdef HEADER_ALIGN HEADER_ALIGN(firstFreeWord, freeWords); # endif } /* Object >= 1 page in size. * It is allocated at the beginning of next page. */ # if HEADER_SIZE else if (size > maxHeaderWords) { fprintf(stderr, "\n***** CMM Unable to allocate objects larger than %d bytes\n", maxHeaderWords * bytesPerWord - bytesPerWord); abort(); } # endif else { int pages = # ifdef HEADER_ALIGN (size + wordsPerPage) / wordsPerPage; # else (size + wordsPerPage - 1) / wordsPerPage; # endif #ifdef NEW_GETPAGES if (! enoughPagesLeft(pages)) collect(); #endif getPages(pages); object = firstFreeWord; /* No object is allocated in final page after object > 1 page */ if (freeWords != 0) { # if HEADER_SIZE *firstFreeWord = MAKE_HEADER(freeWords, freeSpaceTag); # else *firstFreeWord = *(GCP)aGcFreeObject; SET_OBJECTMAP(firstFreeWord); # endif freeWords = 0; } firstFreeWord = NULL; } ALLOC_SETUP(object, size); return(object); } /*---------------------------------------------------------------------------* * -- isTraced * * Results: true if the object is checked by the garbage collector. * *---------------------------------------------------------------------------*/ bool isTraced(void *obj) { extern int end; if ( # ifdef _WIN32 printf("in text?\n") && # else obj >= (void *)(&end) && # endif # ifdef STACK_GROWS_DOWNWARD obj < (void *)(&obj) # else obj > (void *)(&obj) # endif ) { Word page = GCPtoPage(obj); if (OUTSIDE_HEAPS(page)) return false; } return true; } /*---------------------------------------------------------------------------* * -- CmmObject::operator new * * The creation of a new GC object requires: * - to mark its address in table objectMap * - to record its size in the header * *---------------------------------------------------------------------------*/ void * CmmObject::operator new(size_t size, CmmHeap *heap) { GCP object = heap->alloc(size); // To avoid problems in GC after new but during constructor *object = *((GCP)aCmmObject); return (void *)object; } /*---------------------------------------------------------------------------* * * CmmObject::operator delete * *---------------------------------------------------------------------------*/ void CmmObject::operator delete(void *obj) { (((CmmObject *)obj)->heap())->reclaim((GCP)obj); } /*---------------------------------------------------------------------------* * * CmmVarObject::operator new * *---------------------------------------------------------------------------*/ void * CmmVarObject::operator new(size_t size, size_t extraSize, CmmHeap *heap) { GCP object = heap->alloc(size + extraSize); // To avoid problems in GC after new() but during constructor *object = *((GCP)aCmmVarObject); return (void *)object; } /*---------------------------------------------------------------------------* * * -- Verification * *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------* * -- nextObject * * A pointer pointing to the header of an object is stepped to the next * header. Forwarded headers are correctly handled. * * Results: address of immediately consecutive object * *---------------------------------------------------------------------------*/ static GCP nextObject(GCP xp) { #if HEADER_SIZE if (FORWARDED(*xp)) return xp + HEADER_WORDS(*((Word*)(*xp) - HEADER_SIZE)); else return xp + HEADER_WORDS(*xp); #else return xp + ((CmmObject *)xp)->words(); #endif } /*---------------------------------------------------------------------------* * -- verifyObject(cp, old) * * Verifies that a pointer points to an object in the heap. * old means cp should be in FromSpace. * An invalid pointer will be logged and the program will abort. * *---------------------------------------------------------------------------*/ static void verifyObject(GCP cp, bool old) { Page page = GCPtoPage(cp); GCP xp = pageToGCP(page); /* Ptr to start of page */ int error = 0; if (page < firstHeapPage) goto fail; error = 1; if (page > lastHeapPage) goto fail; error = 2; if (pageSpace[page] == UNALLOCATEDSPACE) goto fail; error = 3; if (old && inFreeSpace(page)) goto fail; error = 4; if (!old && pageSpace[page] != nextSpace) goto fail; error = 5; while (cp > xp + HEADER_SIZE) xp = nextObject(xp); if (cp == xp + HEADER_SIZE) return; fail: fprintf(stderr, "\n***** CMM invalid pointer error: %d pointer: 0x%x\n", error, cp); abort(); } /*---------------------------------------------------------------------------* * -- verifyHeader * * Verifies an object's header. * An invalid header will be logged and the program will abort. * *---------------------------------------------------------------------------*/ #ifdef DOUBLE_ALIGN #define HEADER_PAGES(header) ((HEADER_WORDS(header)+wordsPerPage)/wordsPerPage) #else #define HEADER_PAGES(header) ((HEADER_WORDS(header)+wordsPerPage-1)/wordsPerPage) #endif static void verifyHeader(GCP cp) { # if HEADER_SIZE int size = HEADER_WORDS(cp[-HEADER_SIZE]); # else int size = ((CmmObject *)cp)->words(); # endif Page pagen = GCPtoPage(cp); int error = 0; if FORWARDED(cp[-HEADER_SIZE]) goto fail; error = 1; # if HEADER_SIZE if ((unsigned)HEADER_TAG(cp[-HEADER_SIZE]) > 2) goto fail; # endif if (size <= maxSizePerPage) { error = 2; if (cp - HEADER_SIZE + size > pageToGCP(pagen + 1)) goto fail; } else { error = 3; # if HEADER_SIZE int pages = HEADER_PAGES(cp[-HEADER_SIZE]); # else int pages = pageGroup[page]; if (pages < 0) pages = pageGroup[page+pages]; # endif Page pagex = pagen; while (--pages) { pagex++; if (pagex > lastHeapPage || pageGroup[pagex] > 0 || pageSpace[pagex] != pageSpace[pagen]) goto fail; } } return; fail: fprintf(stderr, "\n***** CMM invalid header error: %d object&: 0x%x header: 0x%x\n", error, cp, cp[-HEADER_SIZE]); abort(); } /*---------------------------------------------------------------------------* * * -- Logging and Statistics * *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------* * -- logRoot * * Logs a root to stderr. * *---------------------------------------------------------------------------*/ static void logRoot(GCP fp) { Page page = GCPtoPage(fp); if (page < firstHeapPage || page > lastHeapPage || inFreeSpace(page)) return; int pages = pageGroup[page]; if (pages < 0) page += pages; GCP p1, p2 = pageToGCP(page); while (p2 < (GCP)fp) { p1 = p2; p2 = nextObject(p2); } fprintf(stderr, "***** DefaultHeap::alloc root&: 0x%x object&: 0x%x %s\n", fp, p1, # if HEADER_SIZE HEADER_TAG(*p1) # else *p1 # endif ); } /* Output a newline to stderr if logging is enabled. */ static void newlineIfLogging() { WHEN_VERBOSE ((CMM_DEBUGLOG | CMM_ROOTLOG | CMM_HEAPLOG), fprintf(stderr, "\n")); } /*---------------------------------------------------------------------------* * -- UncollectedHeap::scanRoots(Page page) * * Promotes pages referred by any allocated object inside "page". * (Should be) Used by DefaultHeap to identify pointers from UncollectedHeap. * *---------------------------------------------------------------------------*/ void UncollectedHeap::scanRoots(Page page) { GCP start = pageToGCP(page); GCP end = pageToGCP(page + 1); GCP ptr; for (ptr = start; ptr < end; ptr++) promotePage(ptr); }