Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:9023cfe7eac951feac42e3bd4133ce866a0fe0f0
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • 2837cec
  • /
  • theory.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:54c33e33e8bc629d309ef12151a02656d0abd050
directory badge Iframe embedding
swh:1:dir:2837cecedb2ca8992d5afa9ee54102a1e8fa61b6
revision badge
swh:1:rev:f08bd75aabf7213e253baf26d219c374a745c8d4
snapshot badge
swh:1:snp:9023cfe7eac951feac42e3bd4133ce866a0fe0f0
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: f08bd75aabf7213e253baf26d219c374a745c8d4 authored by Christopher McFarland on 04 February 2019, 22:56:03 UTC
refract
Tip revision: f08bd75
theory.py
import numpy as np
from numpy import log, exp
np.seterr(over='ignore', invalid='ignore', divide='ignore')
from scipy.special import gammainc, gamma
import functools
import pandas as pd
from numpy.random import exponential
class first:
    Ud = 1e-8*700
    Up = 1e-8*5e6
    sd = 0.1
    sp = 1e-3
    N_0 = 1e3
    t_max = 10000

    def __init__(self, **params):
        self.__dict__.update(params)

    @property
    def f(self): return self.Ud*self.sd/(1 + self.sd)

    @property
    def dN(self): return self.sd

    @property
    def vp(self): return self.sp*self.Up

    @property
    def N_eq(self): 
        assert self.vp > 0, 'vp: {x.vp:g}, Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
        assert self.f > 0,  ' f: {x.f:g} , Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
        assert self.dN > 0, 'dN: {x.dN:g}, Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
        return self.vp/(self.f*log(1 + self.dN))
    
    def __repr__(self):
        return """Ud =    {x.Ud:g}
Up =    {x.Up:g}
sd =    {x.sd:g}
sp =    {x.sp:g}
N_0 =   {x.N_0:g}
t_max = {x.t_max:g}
N_eq =  {x.N_eq:g}
""".format(x=self)

    def velocity(model, x): return x*model.N_eq*model.vp*(x - 1)

    def potential(model, x): return model.N_eq*model.vp*x*x*(0.5 - x/3)

    def pC(model, x=None):
        D = 2/log(1+model.dN)
        if x is None:
            x = model.N_0/model.N_eq
        return 1 - gammainc(D, D/x) 

def clonalInterference(model):
    """ CI -> d<d>/dt : sp = 0, Ud ~ sd"""
    from scipy.optimize import fsolve
    sd = model.sd
    def f(V):
        A = V/model.Ud; B = log(A);
        return model.N - (exp(V/2/sd*((B-1)**2+1)-0.5*(log(sd**3/(A*B))- B if V>=sd else 0) ) if V>sd/B else 0.5*A/sd)
    return fsolve(f, sd)

@functools.lru_cache(maxsize=None)
def fAnddN(Up, sd, sp, N):
    from scipy.stats import poisson
    L = Up/sp
    i_max = int(np.ceil(log(1+sd)/log(1+sp)))
    k = (poisson.cdf(np.arange(L), L) < 0.5*pow(N,-0.5)).sum()
    X = np.arange(i_max)
    W = (1+sd)*(1+sp)**-X
    f = poisson.pmf(X+k, L)/(1-poisson.cdf(k-1, L))
    fP = f*(W-1)/W
    dNp = np.empty(i_max)
        
    Lambda = fP.sum()
    assert Lambda < sd/(1+sd), 'wtf!'
    
    dNp[i_max - 1] = i_max - 1
    for i in range(i_max-2, -1, -1): dNp[i] = (i + sp*dNp[i+1])/(1 + sp)
    V = (1 + sd)*(1 + sp)**-dNp
    assert (V <= 1+sd).all()
    return Lambda, fP.dot(V)/Lambda - 1

def moran(Up, sp, N):
    x0 = exp(-Up/sp)
    spp = sp/(np.e-1)
    Tclick = exp(0.5*spp*N*x0)/spp
    return Up*1/Tclick

def wave(Up, sp, N, v_0=1e-12):
    from scipy.optimize import brentq
    x2 = sp*log(N)
    if Up < x2:
        No = N*exp(-Up/sp)
        pi_p = sp/((1 + sp)**No - 1) 
        assert No*Up*pi_p > 0
        return  No*Up*pi_p 
    
    iL = sp/Up
    Nd2spSqrtiL = N/2*sp*np.sqrt(iL)
    fiveSixthsiL = 5*iL/6
    def f(v):
        A = log(np.e*Up/v)
        C = v/Up 
        return 1 - 0.5*C*(A*A + 1) - iL*log(Nd2spSqrtiL*np.sqrt(v*C*C/(Up - v))*A/(1 - C*A + fiveSixthsiL))
    vp = brentq(f, v_0, Up - v_0)
    assert vp > 0
    return min(vp, Up)

@functools.lru_cache(maxsize=None)
def Vp(Up, sp, N):
    L = Up/sp
    if L > 1: 
        return wave(Up, sp, N)
    N_0 = N*exp(-L)
    return moran(Up, sp, N) if sp*N_0 > 1 else (1-L)*moran(Up, sp, N) + L*wave(Up, sp, N)

class second(first):
    @property
    def f(self): 
        return fAnddN(self.Up, self.sd, self.sp, self.N_0)[0]*self.Ud

    @property
    def dN(self): return fAnddN(self.Up, self.sd, self.sp, self.N_0)[1]

    @property
    def vp(self): 
        return self.sp*Vp(self.Up, self.sp, self.N_0)

def safe_integrate(func, a, b, **kwargs):
    from scipy.integrate import quad, romberg
    y, err, *output = quad(func, a, b, full_output=1, **kwargs)
    out = romberg(func, a, b, **kwargs) if len(output) == 2 else y
    #print(out, func(a), func(b), func.__name__)
    return out

def mean_time(model, x, n_low=0.35, n_high=7):
    D = 2/model.dN

    N_eq = model.N_eq
    vp = model.vp
    p = model.pC(x)
    gD = gamma(D)
    
    #print(D, gD, vp, x, N_eq)

    def I1(x):
        p = model.pC(x)
        de_mN = (D/x)**D*exp(-D/x)/gD
        return (1 - p)*p/(de_mN*N_eq*N_eq)

    def I2(x):
        p = model.pC(x)
        de_mN = (D/x)**D*exp(-D/x)/gD
        return p*p/(de_mN*N_eq*N_eq)
    
    if x < n_high and gD < 1e200:
        C = D*N_eq/vp
        if x < n_low:
            return C*safe_integrate(I1, n_low, n_high) + log(n_low/x)/vp + x/(D*vp)
        else:
            return C*(safe_integrate(I1, x, n_high) + (1-p)/p*(gamma(D-1)*(1 - gammainc(D - 1, D/n_low))/(D*N_eq*gD) + safe_integrate(I2, n_low, x))) + 1/(n_high*vp)
    else:
        return 1/(vp*x)

def hGillespie(model, trials=10000000, x_max=2):
    """Hybrid gillespie model"""
    theta = 1 + model.dN
    tau_max = model.t_max*model.vp        # tau = t*vp
    dimmensionless_if = model.vp/model.f/model.N_0    # In units of 
    n_cancers = 0
    Taus = np.empty(trials, dtype=np.double)
    for i in range(trials):
        x = 1
        Taus[n_cancers] = 0
        while x < x_max:
            Q = 1 - exponential()*dimmensionless_if/x
            x *= Q*theta
            Taus[n_cancers] -= log(Q)
            if Taus[n_cancers] > tau_max or x < 0: 
                break
        else:    
            n_cancers += 1
    return pd.Series(dict(
        P_cancer    = n_cancers/trials, 
        generations = Taus[0:n_cancers]/model.vp))

empirical_Pcancer_coeff = {
    2 : np.array([5.72640947,  -4.84536097]),
    3 : np.array([5.77629529,  -4.94655988,    0.04817712]),
    4 : np.array([10.82164987, -16.63749275,   8.31660758,  -1.75101626]),
    5 : np.array([10.78285714, -16.57518638,   8.32469893,  -1.79888812,   0.01717027]),
    6 : np.array([12.38219463, -22.35712125,  15.97711017,  -6.31622209,   1.13227449,  -0.07230064])}

def empiricalPcancer10(y, order=2):
    """assumes sd=0.1 """
    B = empirical_Pcancer_coeff[order]
    return 1/(1+exp((B*pow(y, np.arange(len(B)))).sum() ))

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top