# This file is a part of Julia. License is MIT: https://julialang.org/license # Twice-precision arithmetic. # Necessary for creating nicely-behaved ranges like r = 0.1:0.1:0.3 # that return r[3] == 0.3. Otherwise, we have roundoff error due to # 0.1 + 2*0.1 = 0.30000000000000004 """ hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer) Represent an integer `i` as a pair of floating-point numbers `hi` and `lo` (of type `F`) such that: - `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`. - all bits in `hi` are more significant than any of the bits in `lo` - `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`. In particular, while `convert(Float64, i)` can be lossy since Float64 has only 53 bits of precision, `splitprec(Float64, i)` is exact for any Int64/UInt64. """ function splitprec(::Type{F}, i::Integer) where {F<:AbstractFloat} hi = truncbits(F(i), cld(precision(F), 2)) ihi = oftype(i, hi) hi, F(i - ihi) end function truncmask(x::F, mask) where {F<:IEEEFloat} reinterpret(F, mask & reinterpret(uinttype(F), x)) end truncmask(x, mask) = x function truncbits(x::F, nb) where {F<:IEEEFloat} truncmask(x, typemax(uinttype(F)) << nb) end truncbits(x, nb) = x ## Dekker arithmetic """ hi, lo = canonicalize2(big, little) Generate a representation where all the nonzero bits in `hi` are more significant than any of the nonzero bits in `lo`. `big` must be larger in absolute value than `little`. """ function canonicalize2(big, little) h = big+little h, (big - h) + little end """ zhi, zlo = add12(x, y) A high-precision representation of `x + y` for floating-point numbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the most significant bits and `zlo` the least significant. Because of the way floating-point numbers are printed, `lo` may not look the way you might expect from the standpoint of decimal representation, even though it is exact from the standpoint of binary representation. Example: ```julia julia> 1.0 + 1.0001e-15 1.000000000000001 julia> big(1.0) + big(1.0001e-15) 1.000000000000001000100000000000020165767380775934141445417482375879192346701529 julia> hi, lo = Base.add12(1.0, 1.0001e-15) (1.000000000000001, -1.1012302462515652e-16) julia> big(hi) + big(lo) 1.000000000000001000100000000000020165767380775934141445417482375879192346701529 ``` `lo` differs from 1.0e-19 because `hi` is not exactly equal to the first 16 decimal digits of the answer. """ function add12(x::T, y::T) where {T} x, y = ifelse(abs(y) > abs(x), (y, x), (x, y)) canonicalize2(x, y) end add12(x, y) = add12(promote(x, y)...) """ zhi, zlo = mul12(x, y) A high-precision representation of `x * y` for floating-point numbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the most significant bits and `zlo` the least significant. Example: ```julia julia> x = Float32(π) 3.1415927f0 julia> x * x 9.869605f0 julia> Float64(x) * Float64(x) 9.869604950382893 julia> hi, lo = Base.mul12(x, x) (9.869605f0, -1.140092f-7) julia> Float64(hi) + Float64(lo) 9.869604950382893 ``` """ function mul12(x::T, y::T) where {T<:AbstractFloat} h = x * y ifelse(iszero(h) | !isfinite(h), (h, h), canonicalize2(h, fma(x, y, -h))) end mul12(x::T, y::T) where {T} = (p = x * y; (p, zero(p))) mul12(x, y) = mul12(promote(x, y)...) """ zhi, zlo = div12(x, y) A high-precision representation of `x / y` for floating-point numbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the most significant bits and `zlo` the least significant. Example: ```julia julia> x, y = Float32(π), 3.1f0 (3.1415927f0, 3.1f0) julia> x / y 1.013417f0 julia> Float64(x) / Float64(y) 1.0134170444063078 julia> hi, lo = Base.div12(x, y) (1.013417f0, 3.8867366f-8) julia> Float64(hi) + Float64(lo) 1.0134170444063066 """ function div12(x::T, y::T) where {T<:AbstractFloat} # We lose precision if any intermediate calculation results in a subnormal. # To prevent this from happening, standardize the values. xs, xe = frexp(x) ys, ye = frexp(y) r = xs / ys rh, rl = canonicalize2(r, -fma(r, ys, -xs)/ys) ifelse(iszero(r) | !isfinite(r), (r, r), (ldexp(rh, xe-ye), ldexp(rl, xe-ye))) end div12(x::T, y::T) where {T} = (p = x / y; (p, zero(p))) div12(x, y) = div12(promote(x, y)...) ## TwicePrecision """ TwicePrecision{T}(hi::T, lo::T) TwicePrecision{T}((num, denom)) A number with twice the precision of `T`, e.g., quad-precision if `T = Float64`. `hi` represents the high bits (most significant bits) and `lo` the low bits (least significant bits). Rational values `num//denom` can be approximated conveniently using the syntax `TwicePrecision{T}((num, denom))`. When used with `T<:Union{Float16,Float32,Float64}` to construct an "exact" `StepRangeLen`, `ref` should be the range element with smallest magnitude and `offset` set to the corresponding index. For efficiency, multiplication of `step` by the index is not performed at twice precision: `step.hi` should have enough trailing zeros in its `bits` representation that `(0:len-1)*step.hi` is exact (has no roundoff error). If `step` has an exact rational representation `num//denom`, then you can construct `step` using step = TwicePrecision{T}((num, denom), nb) where `nb` is the number of trailing zero bits of `step.hi`. For ranges, you can set `nb = ceil(Int, log2(len-1))`. """ struct TwicePrecision{T} hi::T # most significant bits lo::T # least significant bits end TwicePrecision{T}(x::T) where {T} = TwicePrecision{T}(x, zero(T)) function TwicePrecision{T}(x) where {T} xT = convert(T, x) Δx = x - xT TwicePrecision{T}(xT, T(Δx)) end TwicePrecision{T}(i::Integer) where {T<:AbstractFloat} = TwicePrecision{T}(canonicalize2(splitprec(T, i)...)...) TwicePrecision(x) = TwicePrecision{typeof(x)}(x) # Numerator/Denominator constructors function TwicePrecision{T}(nd::Tuple{Integer,Integer}) where {T<:Union{Float16,Float32}} n, d = nd TwicePrecision{T}(n/d) end function TwicePrecision{T}(nd::Tuple{Any,Any}) where {T} n, d = nd TwicePrecision{T}(n) / d end function TwicePrecision{T}(nd::Tuple{I,I}, nb::Integer) where {T,I} twiceprecision(TwicePrecision{T}(nd), nb) end # Fix #39798 # See steprangelen_hp(::Type{Float64}, ref::Tuple{Integer,Integer}, # step::Tuple{Integer,Integer}, nb::Integer, # len::Integer, offset::Integer) function TwicePrecision{T}(nd::Tuple{Integer,Integer}, nb::Integer) where T twiceprecision(TwicePrecision{T}(nd), nb) end # Truncating constructors. Useful for generating values that can be # exactly multiplied by small integers. function twiceprecision(val::T, nb::Integer) where {T<:IEEEFloat} hi = truncbits(val, nb) TwicePrecision{T}(hi, val - hi) end function twiceprecision(val::TwicePrecision{T}, nb::Integer) where {T<:IEEEFloat} hi = truncbits(val.hi, nb) TwicePrecision{T}(hi, (val.hi - hi) + val.lo) end nbitslen(r::StepRangeLen) = nbitslen(eltype(r), length(r), r.offset) nbitslen(::Type{T}, len, offset) where {T<:IEEEFloat} = min(cld(precision(T), 2), nbitslen(len, offset)) # The +1 here is for safety, because the precision of the significand # is 1 bit higher than the number that are explicitly stored. nbitslen(len, offset) = len < 2 ? 0 : ceil(Int, log2(max(offset-1, len-offset))) + 1 eltype(::Type{TwicePrecision{T}}) where {T} = T promote_rule(::Type{TwicePrecision{R}}, ::Type{TwicePrecision{S}}) where {R,S} = TwicePrecision{promote_type(R,S)} promote_rule(::Type{TwicePrecision{R}}, ::Type{S}) where {R,S<:Number} = TwicePrecision{promote_type(R,S)} (::Type{T})(x::TwicePrecision) where {T<:Number} = T(x.hi + x.lo)::T TwicePrecision{T}(x::Number) where {T} = TwicePrecision{T}(T(x), zero(T)) convert(::Type{TwicePrecision{T}}, x::TwicePrecision{T}) where {T} = x convert(::Type{TwicePrecision{T}}, x::TwicePrecision) where {T} = TwicePrecision{T}(convert(T, x.hi), convert(T, x.lo)) convert(::Type{T}, x::TwicePrecision) where {T<:Number} = T(x) convert(::Type{TwicePrecision{T}}, x::Number) where {T} = TwicePrecision{T}(x) float(x::TwicePrecision{<:AbstractFloat}) = x float(x::TwicePrecision) = TwicePrecision(float(x.hi), float(x.lo)) big(x::TwicePrecision) = big(x.hi) + big(x.lo) -(x::TwicePrecision) = TwicePrecision(-x.hi, -x.lo) function zero(::Type{TwicePrecision{T}}) where {T} z = zero(T) TwicePrecision{T}(z, z) end # Arithmetic function +(x::TwicePrecision, y::Number) s_hi, s_lo = add12(x.hi, y) TwicePrecision(canonicalize2(s_hi, s_lo+x.lo)...) end +(x::Number, y::TwicePrecision) = y+x function +(x::TwicePrecision{T}, y::TwicePrecision{T}) where T r = x.hi + y.hi s = abs(x.hi) > abs(y.hi) ? (((x.hi - r) + y.hi) + y.lo) + x.lo : (((y.hi - r) + x.hi) + x.lo) + y.lo TwicePrecision(canonicalize2(r, s)...) end +(x::TwicePrecision, y::TwicePrecision) = +(promote(x, y)...) -(x::TwicePrecision, y::TwicePrecision) = x + (-y) -(x::TwicePrecision, y::Number) = x + (-y) -(x::Number, y::TwicePrecision) = x + (-y) function *(x::TwicePrecision, v::Number) v == 0 && return TwicePrecision(x.hi*v, x.lo*v) x * TwicePrecision(oftype(x.hi*v, v)) end function *(x::TwicePrecision{<:IEEEFloat}, v::Integer) v == 0 && return TwicePrecision(x.hi*v, x.lo*v) nb = ceil(Int, log2(abs(v))) u = truncbits(x.hi, nb) TwicePrecision(canonicalize2(u*v, ((x.hi-u) + x.lo)*v)...) end *(v::Number, x::TwicePrecision) = x*v function *(x::TwicePrecision{T}, y::TwicePrecision{T}) where {T} zh, zl = mul12(x.hi, y.hi) ret = TwicePrecision{T}(canonicalize2(zh, (x.hi * y.lo + x.lo * y.hi) + zl)...) ifelse(iszero(zh) | !isfinite(zh), TwicePrecision{T}(zh, zh), ret) end *(x::TwicePrecision, y::TwicePrecision) = *(promote(x, y)...) function /(x::TwicePrecision, v::Number) x / TwicePrecision(oftype(x.hi/v, v)) end function /(x::TwicePrecision, y::TwicePrecision) hi = x.hi / y.hi uh, ul = mul12(hi, y.hi) lo = ((((x.hi - uh) - ul) + x.lo) - hi*y.lo)/y.hi ret = TwicePrecision(canonicalize2(hi, lo)...) ifelse(iszero(hi) | !isfinite(hi), TwicePrecision(hi, hi), ret) end ## StepRangeLen # Use TwicePrecision only for Float64; use Float64 for T<:Union{Float16,Float32} # See also _linspace1 # Ratio-of-integers constructors function steprangelen_hp(::Type{Float64}, ref::Tuple{Integer,Integer}, step::Tuple{Integer,Integer}, nb::Integer, len::Integer, offset::Integer) StepRangeLen(TwicePrecision{Float64}(ref), TwicePrecision{Float64}(step, nb), Int(len), offset) end function steprangelen_hp(::Type{T}, ref::Tuple{Integer,Integer}, step::Tuple{Integer,Integer}, nb::Integer, len::Integer, offset::Integer) where {T<:IEEEFloat} StepRangeLen{T}(ref[1]/ref[2], step[1]/step[2], Int(len), offset) end # AbstractFloat constructors (can supply a single number or a 2-tuple const F_or_FF = Union{AbstractFloat, Tuple{AbstractFloat,AbstractFloat}} asF64(x::AbstractFloat) = Float64(x) asF64(x::Tuple{AbstractFloat,AbstractFloat}) = Float64(x[1]) + Float64(x[2]) function steprangelen_hp(::Type{Float64}, ref::F_or_FF, step::F_or_FF, nb::Integer, len::Integer, offset::Integer) StepRangeLen(TwicePrecision{Float64}(ref...), twiceprecision(TwicePrecision{Float64}(step...), nb), Int(len), offset) end function steprangelen_hp(::Type{T}, ref::F_or_FF, step::F_or_FF, nb::Integer, len::Integer, offset::Integer) where {T<:IEEEFloat} StepRangeLen{T}(asF64(ref), asF64(step), Int(len), offset) end StepRangeLen(ref::TwicePrecision{T}, step::TwicePrecision{T}, len::Integer, offset::Integer=1) where {T} = StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}(ref, step, len, offset) # Construct range for rational start=start_n/den, step=step_n/den function floatrange(::Type{T}, start_n::Integer, step_n::Integer, len::Integer, den::Integer) where T if len < 2 || step_n == 0 return steprangelen_hp(T, (start_n, den), (step_n, den), 0, Int(len), 1) end # index of smallest-magnitude value imin = clamp(round(Int, -start_n/step_n+1), 1, Int(len)) # Compute smallest-magnitude element to 2x precision ref_n = start_n+(imin-1)*step_n # this shouldn't overflow, so don't check nb = nbitslen(T, len, imin) steprangelen_hp(T, (ref_n, den), (step_n, den), nb, Int(len), imin) end function floatrange(a::AbstractFloat, st::AbstractFloat, len::Real, divisor::AbstractFloat) T = promote_type(typeof(a), typeof(st), typeof(divisor)) m = maxintfloat(T, Int) if abs(a) <= m && abs(st) <= m && abs(divisor) <= m ia, ist, idivisor = round(Int, a), round(Int, st), round(Int, divisor) if ia == a && ist == st && idivisor == divisor # We can return the high-precision range return floatrange(T, ia, ist, Int(len), idivisor) end end # Fallback (misses the opportunity to set offset different from 1, # but otherwise this is still high-precision) steprangelen_hp(T, (a,divisor), (st,divisor), nbitslen(T, len, 1), Int(len), 1) end function (:)(start::T, step::T, stop::T) where T<:Union{Float16,Float32,Float64} step == 0 && throw(ArgumentError("range step cannot be zero")) # see if the inputs have exact rational approximations (and if so, # perform all computations in terms of the rationals) step_n, step_d = rat(step) if step_d != 0 && T(step_n/step_d) == step start_n, start_d = rat(start) stop_n, stop_d = rat(stop) if start_d != 0 && stop_d != 0 && T(start_n/start_d) == start && T(stop_n/stop_d) == stop den = lcm_unchecked(start_d, step_d) # use same denominator for start and step m = maxintfloat(T, Int) if den != 0 && abs(start*den) <= m && abs(step*den) <= m && # will round succeed? rem(den, start_d) == 0 && rem(den, step_d) == 0 # check lcm overflow start_n = round(Int, start*den) step_n = round(Int, step*den) len = max(0, div(den*stop_n - stop_d*start_n + step_n*stop_d, step_n*stop_d)) # Integer ops could overflow, so check that this makes sense if isbetween(start, start + (len-1)*step, stop + step/2) && !isbetween(start, start + len*step, stop) # Return a 2x precision range return floatrange(T, start_n, step_n, len, den) end end end end # Fallback, taking start and step literally lf = (stop-start)/step if lf < 0 len = 0 elseif lf == 0 len = 1 else len = round(Int, lf) + 1 stop′ = start + (len-1)*step # if we've overshot the end, subtract one: len -= (start < stop < stop′) + (start > stop > stop′) end steprangelen_hp(T, start, step, 0, len, 1) end step(r::StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}) where {T<:AbstractFloat} = T(r.step) step(r::StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}) where {T} = T(r.step) function range_start_step_length(a::T, st::T, len::Integer) where T<:Union{Float16,Float32,Float64} start_n, start_d = rat(a) step_n, step_d = rat(st) if start_d != 0 && step_d != 0 && T(start_n/start_d) == a && T(step_n/step_d) == st den = lcm_unchecked(start_d, step_d) m = maxintfloat(T, Int) if abs(den*a) <= m && abs(den*st) <= m && rem(den, start_d) == 0 && rem(den, step_d) == 0 start_n = round(Int, den*a) step_n = round(Int, den*st) return floatrange(T, start_n, step_n, len, den) end end steprangelen_hp(T, a, st, 0, len, 1) end # This assumes that r.step has already been split so that (0:len-1)*r.step.hi is exact function unsafe_getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, i::Integer) where T # Very similar to _getindex_hiprec, but optimized to avoid a 2nd call to add12 @_inline_meta i isa Bool && throw(ArgumentError("invalid index: $i of type Bool")) u = i - r.offset shift_hi, shift_lo = u*r.step.hi, u*r.step.lo x_hi, x_lo = add12(r.ref.hi, shift_hi) T(x_hi + (x_lo + (shift_lo + r.ref.lo))) end function _getindex_hiprec(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}, i::Integer) i isa Bool && throw(ArgumentError("invalid index: $i of type Bool")) u = i - r.offset shift_hi, shift_lo = u*r.step.hi, u*r.step.lo x_hi, x_lo = add12(r.ref.hi, shift_hi) x_hi, x_lo = add12(x_hi, x_lo + (shift_lo + r.ref.lo)) TwicePrecision(x_hi, x_lo) end function getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, s::OrdinalRange{S}) where {T, S<:Integer} @boundscheck checkbounds(r, s) if S === Bool if length(s) == 0 return StepRangeLen(r.ref, r.step, 0, 1) elseif length(s) == 1 if first(s) return StepRangeLen(r.ref, r.step, 1, 1) else return StepRangeLen(r.ref, r.step, 0, 1) end else # length(s) == 2 return StepRangeLen(r[2], step(r), 1, 1) end else soffset = 1 + round(Int, (r.offset - first(s))/step(s)) soffset = clamp(soffset, 1, length(s)) ioffset = first(s) + (soffset-1)*step(s) if step(s) == 1 || length(s) < 2 newstep = r.step else newstep = twiceprecision(r.step*step(s), nbitslen(T, length(s), soffset)) end if ioffset == r.offset return StepRangeLen(r.ref, newstep, length(s), max(1,soffset)) else return StepRangeLen(r.ref + (ioffset-r.offset)*r.step, newstep, length(s), max(1,soffset)) end end end *(x::Real, r::StepRangeLen{<:Real,<:TwicePrecision}) = StepRangeLen(x*r.ref, twiceprecision(x*r.step, nbitslen(r)), length(r), r.offset) *(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) = x*r /(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) = StepRangeLen(r.ref/x, twiceprecision(r.step/x, nbitslen(r)), length(r), r.offset) StepRangeLen{T,R,S}(r::StepRangeLen{T,R,S}) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} = r StepRangeLen{T,R,S}(r::StepRangeLen) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} = _convertSRL(StepRangeLen{T,R,S}, r) StepRangeLen{Float64}(r::StepRangeLen) = _convertSRL(StepRangeLen{Float64,TwicePrecision{Float64},TwicePrecision{Float64}}, r) StepRangeLen{T}(r::StepRangeLen) where {T<:IEEEFloat} = _convertSRL(StepRangeLen{T,Float64,Float64}, r) StepRangeLen{Float64}(r::AbstractRange) = _convertSRL(StepRangeLen{Float64,TwicePrecision{Float64},TwicePrecision{Float64}}, r) StepRangeLen{T}(r::AbstractRange) where {T<:IEEEFloat} = _convertSRL(StepRangeLen{T,Float64,Float64}, r) function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{<:Integer}) where {T,R,S} StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset) end function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{<:Integer}) where {T,R,S} StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r)) end function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{U}) where {T,R,S,U} # if start and step have a rational approximation in the old type, # then we transfer that rational approximation to the new type f, s = first(r), step(r) start_n, start_d = rat(f) step_n, step_d = rat(s) if start_d != 0 && step_d != 0 && U(start_n/start_d) == f && U(step_n/step_d) == s den = lcm_unchecked(start_d, step_d) m = maxintfloat(T, Int) if den != 0 && abs(f*den) <= m && abs(s*den) <= m && rem(den, start_d) == 0 && rem(den, step_d) == 0 start_n = round(Int, f*den) step_n = round(Int, s*den) return floatrange(T, start_n, step_n, length(r), den) end end __convertSRL(StepRangeLen{T,R,S}, r) end function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{U}) where {T,R,S,U} StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset) end function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{U}) where {T,R,S,U} StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r)) end function sum(r::StepRangeLen) l = length(r) # Compute the contribution of step over all indices. # Indexes on opposite side of r.offset contribute with opposite sign, # r.step * (sum(1:np) - sum(1:nn)) np, nn = l - r.offset, r.offset - 1 # positive, negative # To prevent overflow in sum(1:n), multiply its factors by the step sp, sn = sumpair(np), sumpair(nn) W = widen(Int) Δn = W(sp[1]) * W(sp[2]) - W(sn[1]) * W(sn[2]) s = r.step * Δn # Add in contributions of ref ref = r.ref * l convert(eltype(r), s + ref) end function sum(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}) l = length(r) # Compute the contribution of step over all indices. # Indexes on opposite side of r.offset contribute with opposite sign, # r.step * (sum(1:np) - sum(1:nn)) np, nn = l - r.offset, r.offset - 1 # positive, negative # To prevent overflow in sum(1:n), multiply its factors by the step sp, sn = sumpair(np), sumpair(nn) tp = _tp_prod(r.step, sp[1], sp[2]) tn = _tp_prod(r.step, sn[1], sn[2]) s_hi, s_lo = add12(tp.hi, -tn.hi) s_lo += tp.lo - tn.lo # Add in contributions of ref ref = r.ref * l sm_hi, sm_lo = add12(s_hi, ref.hi) add12(sm_hi, sm_lo + ref.lo)[1] end # sum(1:n) as a product of two integers sumpair(n::Integer) = iseven(n) ? (n+1, n>>1) : (n, (n+1)>>1) function +(r1::StepRangeLen{T,R}, r2::StepRangeLen{T,R}) where T where R<:TwicePrecision len = length(r1) (len == length(r2) || throw(DimensionMismatch("argument dimensions must match"))) if r1.offset == r2.offset imid = r1.offset ref = r1.ref + r2.ref else imid = round(Int, (r1.offset+r2.offset)/2) ref1mid = _getindex_hiprec(r1, imid) ref2mid = _getindex_hiprec(r2, imid) ref = ref1mid + ref2mid end step = twiceprecision(r1.step + r2.step, nbitslen(T, len, imid)) StepRangeLen{T,typeof(ref),typeof(step)}(ref, step, len, imid) end ## LinRange # For Float16, Float32, and Float64, this returns a StepRangeLen function range_start_stop_length(start::T, stop::T, len::Integer) where {T<:IEEEFloat} len < 2 && return _linspace1(T, start, stop, len) if start == stop return steprangelen_hp(T, start, zero(T), 0, len, 1) end # Attempt to find exact rational approximations start_n, start_d = rat(start) stop_n, stop_d = rat(stop) if start_d != 0 && stop_d != 0 den = lcm_unchecked(start_d, stop_d) m = maxintfloat(T, Int) if den != 0 && abs(den*start) <= m && abs(den*stop) <= m start_n = round(Int, den*start) stop_n = round(Int, den*stop) if T(start_n/den) == start && T(stop_n/den) == stop return _linspace(T, start_n, stop_n, len, den) end end end _linspace(start, stop, len) end function _linspace(start::T, stop::T, len::Integer) where {T<:IEEEFloat} (isfinite(start) && isfinite(stop)) || throw(ArgumentError("start and stop must be finite, got $start and $stop")) # Find the index that returns the smallest-magnitude element Δ, Δfac = stop-start, 1 if !isfinite(Δ) # handle overflow for large endpoints Δ, Δfac = stop/len - start/len, Int(len) end tmin = -(start/Δ)/Δfac # t such that (1-t)*start + t*stop == 0 imin = round(Int, tmin*(len-1)+1) # index approximately corresponding to t if 1 < imin < len # The smallest-magnitude element is in the interior t = (imin-1)/(len-1) ref = T((1-t)*start + t*stop) step = imin-1 < len-imin ? (ref-start)/(imin-1) : (stop-ref)/(len-imin) elseif imin <= 1 imin = 1 ref = start step = (Δ/(len-1))*Δfac else imin = Int(len) ref = stop step = (Δ/(len-1))*Δfac end if len == 2 && !isfinite(step) # For very large endpoints where step overflows, exploit the # split-representation to handle the overflow return steprangelen_hp(T, start, (-start, stop), 0, 2, 1) end # 2x calculations to get high precision endpoint matching while also # preventing overflow in ref_hi+(i-offset)*step_hi m, k = prevfloat(floatmax(T)), max(imin-1, len-imin) step_hi_pre = clamp(step, max(-(m+ref)/k, (-m+ref)/k), min((m-ref)/k, (m+ref)/k)) nb = nbitslen(T, len, imin) step_hi = truncbits(step_hi_pre, nb) x1_hi, x1_lo = add12((1-imin)*step_hi, ref) x2_hi, x2_lo = add12((len-imin)*step_hi, ref) a, b = (start - x1_hi) - x1_lo, (stop - x2_hi) - x2_lo step_lo = (b - a)/(len - 1) ref_lo = a - (1 - imin)*step_lo steprangelen_hp(T, (ref, ref_lo), (step_hi, step_lo), 0, Int(len), imin) end # range for rational numbers, start = start_n/den, stop = stop_n/den # Note this returns a StepRangeLen _linspace(::Type{T}, start::Integer, stop::Integer, len::Integer) where {T<:IEEEFloat} = _linspace(T, start, stop, len, one(start)) function _linspace(::Type{T}, start_n::Integer, stop_n::Integer, len::Integer, den::Integer) where T<:IEEEFloat len < 2 && return _linspace1(T, start_n/den, stop_n/den, len) start_n == stop_n && return steprangelen_hp(T, (start_n, den), (zero(start_n), den), 0, len, 1) tmin = -start_n/(Float64(stop_n) - Float64(start_n)) imin = round(Int, tmin*(len-1)+1) imin = clamp(imin, 1, Int(len)) ref_num = Int128(len-imin) * start_n + Int128(imin-1) * stop_n ref_denom = Int128(len-1) * den ref = (ref_num, ref_denom) step_full = (Int128(stop_n) - Int128(start_n), ref_denom) steprangelen_hp(T, ref, step_full, nbitslen(T, len, imin), Int(len), imin) end # For len < 2 function _linspace1(::Type{T}, start, stop, len::Integer) where T<:IEEEFloat len >= 0 || throw(ArgumentError("range($start, stop=$stop, length=$len): negative length")) if len <= 1 len == 1 && (start == stop || throw(ArgumentError("range($start, stop=$stop, length=$len): endpoints differ"))) # Ensure that first(r)==start and last(r)==stop even for len==0 # The output type must be consistent with steprangelen_hp if T<:Union{Float32,Float16} return StepRangeLen{T}(Float64(start), Float64(start) - Float64(stop), len, 1) else return StepRangeLen(TwicePrecision(start, zero(T)), TwicePrecision(start, -stop), len, 1) end end throw(ArgumentError("should only be called for len < 2, got $len")) end ### Numeric utilities # Approximate x with a rational representation. Guaranteed to return, # but not guaranteed to return a precise answer. # https://en.wikipedia.org/wiki/Continued_fraction#Best_rational_approximations function rat(x) y = x a = d = 1 b = c = 0 m = maxintfloat(narrow(typeof(x)), Int) while abs(y) <= m f = trunc(Int,y) y -= f a, c = f*a + c, a b, d = f*b + d, b max(abs(a), abs(b)) <= convert(Int,m) || return c, d oftype(x,a)/oftype(x,b) == x && break y = inv(y) end return a, b end # This version of lcm does not check for overflows lcm_unchecked(a::T, b::T) where T<:Integer = a * div(b, gcd(a, b)) narrow(::Type{T}) where {T<:AbstractFloat} = Float64 narrow(::Type{Float64}) = Float32 narrow(::Type{Float32}) = Float16 narrow(::Type{Float16}) = Float16 function _tp_prod(t::TwicePrecision, x, y...) @_inline_meta _tp_prod(t * x, y...) end _tp_prod(t::TwicePrecision) = t <(x::TwicePrecision{T}, y::TwicePrecision{T}) where {T} = x.hi < y.hi || ((x.hi == y.hi) & (x.lo < y.lo)) isbetween(a, x, b) = a <= x <= b || b <= x <= a