
eMolFrag User Guide

Tairan Liu

Misagh Naderi

Feb 09, 2017



Copyright c©2017 Tairan Liu

Disclaimer and Acknowledgements
This program is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or fitness
for any purpose. The entire risk as to the quality and performance of the
program is with the user.

eMolFrag was developed by Tairan Liu as part of a collaboration between
the Computational Systems Biology Group in the Department of Biological
Sciences and the Division of Computer Science and Engineering at Louisiana
State University.
Email address:
Tairan Liu: tliu7@lsu.edu
Misagh Naderi: mnader5@lsu.edu
Chris Alvin: calvin@bradley.edu
Supratik Mukhopadhyay: supratik@csc.lsu.edu
Michal Brylinski: michal@brylinski.org



Contents

1 Introduction 1

2 Installation and Setup 2

3 Using eMolFrag 3

4 Output 5

5 Online Resources 11



1 Introduction

eMolFrag is a new open source software to decompose organic compounds
into non-redundant sets of fragments retaining the connectivity information.

The code has been developed in Python. In order to perform the fragmen-
tation process, eMolFrag utilizes BRICS algorithm [2] implemented in the
RDKit [4] Python module. Although the resulting fragments can be paired
with a variety of virtual molecular synthesis tool, eMolFrag is specfically op-
timized to work with the software eSynth [5].

The following sections will give an overview of eMolFrag.

1



2 Installation and Setup

Prerequisites:
1. Python (either 2 or 3)
2. RDKit 2015.09.2 or newer (2016.03.3 has been tested). It is recommended
to use Anaconda to install RDKit and use the following command: ”conda
install -c rdkit rdkit=2015.09.2”.
3. pkcombu [3]
4. eMolFrag scripts
5. Openbabel 2.3.1 [6] (Optional)

Installation:
Use ConfigurePath.py to configure paths. The paths are only needed to be
set prior to first run as long as the actual paths are unchanged. After the
script starts, instructions will be given for setting paths.

1. The first path is for eMolFrag scripts. The absolute path to the scripts
folder is needed.
2. The second path is for pkcombu. The absolute path to pkcombu to be
used is needed.

For example:

$ python / . . . / ConfigurePath . py # run Conf igure path ,
use abso lu t e path

$ # step 1 : assuming that path to eMolFrag . py i s / . . . /
eMolFrag 201x xx xx xx /eMolFrag . py , type : / . . . /
eMolFrag 201x xx xx xx /

$ # step 2 : assuming that path to pkcombu i s / . . . /
pkcombu , type : / . . . / pkcombu

2



3 Using eMolFrag

Run scripts to process data:

$ / Path to Python /python / P a t h t o s c r i p t s /eMolFrag . py −
i / P a t h t o i n p u t d i r e c t o r y / −o /
Path to ou tput d i r e c t o ry / −p Number−Of−Cores −m
Output−s e l e c t i o n −c Output−format

Table 1: Input segments description.
Term Description
/Path to Python/python May be simplified to python.

/Path to scripts/eMolFrag.py
Main path to the scripts, relative path is also
acceptable.

/Path to input directory/
Path of the directory which contains input
mol2 files, relative path is also acceptable.

/Path to output directory/
Path of the directory for output, relative path
is also acceptable.

Number-Of-Cores

Number of processes created in parallel step.
It is better to set this parameter no larger than
the number of cores of the system/node/clus-
ter.

Output-selection
Output selection: removing redundancy (or
not), keeping temporary files (or not).

Output-format Extensive or simple output formats.

3



Table 2: Input arguments description.

Parameter Optional
Default ar-
gument

Example of
argument

Description

-i N No default
/.../test-
set100/

Input path

-o N No default
/.../output-
100-1/

Output path

-p Y 1 16 Parallel cores to be used

-m Y 0 1

Output selection:
0: extensive process and output
1: extracted fragments without re-
moving redundancy
2: non-redundant fragment sets

-c Y 0 1

Output format:
0: exhaustive format
1: all linkers in one file, all bricks
in one file, all logs in one folder
2: remove log folder

Example:

$ python / . . . / eMolFrag 201x xx xx xx /eMolFrag . py − i
/ . . . / TestEMolFrag/ te s t−se t100 / −o / . . . / TestEMolFrag/
outputp−t e s t s e t 100 −1/ −p 16 −m 0 −c 0

$ # Check output .

4



4 Output

Fragments extracted with eMolFrag are categorized as Bricks and Linkers.
An example is shown below in Figure 1.

Figure 1: Example of a parent molecule and the extracted fragments.

As in Figure 1, the first column is the parent molecule, the second and third
columns are all the fragments generated from this parent molecule.

Now take a look at the details of fragments.
A brick fragment is stored in standard Structure Data format [1] followed by
auxiliray information, as shown in Figure 2. “> <ATOMTYPES>” section
provides the sybyl atom types [1] following the original sdf atom order. “>
<BRANCH @atom-number eligible-atmtype-to-connect>” section shows the
connections that the fragment was extracted from. First column is the atom
number and the following columns include all the atoms that were observed
to be connected to the atom in the fragment. For example, in the brick
fragment in Figure 2, the 6th atom which is an N.3 was disconnected from a
C.3 atom. “> <fragments similar>” provides the name of same fragments
extracted from different molecule or molecular contexts.

5



Figure 2: Example of a brick fragment in sdf format.

6



In linker fragments, on the other hand, only one auxiliary information section
“> <MAX-NUMBER-Of-CONTACT ATOMTYPES>” is added. The first
column in this section shows the maximum number of observed connections
at every atom following the original order of atoms in the linker’s sdf file.
The atom type is mentioned in the second column. For example, the second
line “1 C.3” means that the second atom is a C.3 and it can connect 1 other
atom at most.

Figure 3: Example of a linker fragment in sdf format.

eMolFrag provides options to control the format of output. Here is a list of
output folders/files and their corresponding descriptions for choosing differ-
ent options.

7



A. Output format 0: Exhaustive format

Table 3: Output description.
Directory File Name Description
../output-
chop-comb

*.sdf
All brick and linker fragments before removing
redundancy.

../output-
brick

b-*.sdf All unique brick fragments.

../output-
linker

l-*.sdf All unique linker fragments.

../output-log

InputList File contains all the input *.mol2 file names

ListAll
File contains all the fragments before recon-
necting small linkers, and total/carbon/nitro-
gen/oxygen atom numbers in each fragment

BrickListAll.txt
File contains all the brick fragments and
total/carbon/nitrogen/oxygen atoms in each
fragment.

LinkerListAll.txt
File contains all the linker fragments after
reconnect and total/carbon/nitrogen/oxygen
atoms in each fragment.

BrickGroupList.txt

Brick fragments are grouped by the total num-
ber of C, N and O heavy atoms. The number
shows the frequency of fragments with similar
combination of atoms.

LinkerGroupList.txt

Linker fragments are grouped by the total
number of C, N and O heavy atoms. The
number shows the frequency of fragments with
similar combination of atoms.

brick-log.txt
Log file for removing redundancy of brick frag-
ments and similarity information.

linker-log.txt
Log file for removing redundancy of linker
fragments and similarity information.

Process.log Log file for the whole process.

8



B. Output format 1: Simple output format with log and statistics

Table 4: Output description.
Directory File Name Description

../ BrickFull.sdf
All brick fragments before removing redun-
dancy in one file.

../ BrickUnique.sdf All unique brick fragments in one file.

../ LinkerFull.sdf
All linker fragments before removing redun-
dancy in one file.

../ LinkerUnique.sdf All unique linker fragments in one file.

../output-log

InputList File contains all the input *.mol2 file names

ListAll
File contains all the fragments before recon-
necting small linkers, and total/carbon/nitro-
gen/oxygen atom numbers in each fragment

BrickListAll.txt
File contains all the brick fragments and
total/carbon/nitrogen/oxygen atoms in each
fragment.

LinkerListAll.txt
File contains all the linker fragments after
reconnect and total/carbon/nitrogen/oxygen
atoms in each fragment.

BrickGroupList.txt

Brick fragments are grouped by the total num-
ber of C, N and O heavy atoms. The number
shows the frequency of fragments with similar
combination of atoms.

LinkerGroupList.txt

Linker fragments are grouped by the total
number of C, N and O heavy atoms. The
number shows the frequency of fragments with
similar combination of atoms.

brick-log.txt
Log file for removing redundancy of brick frag-
ments and similarity information.

linker-log.txt
Log file for removing redundancy of linker
fragments and similarity information.

Process.log Log file for the whole process.

9



C. Output format 2: Simple output format.

Table 5: Output description.
Directory File Name Description

../ BrickFull.sdf
All brick fragments before removing redun-
dancy in one file.

../ BrickUnique.sdf All unique brick fragments in one file.

../ LinkerFull.sdf
All linker fragments before removing redun-
dancy in one file.

../ LinkerUnique.sdf All unique linker fragments in one file.

10



5 Online Resources

The most recent version of eMolFrag is available at:
https://github.com/liutairan/eMolFrag

http://brylinski.cct.lsu.edu/content/emolfrag-standalone-package

If you meet any problems or find any bugs with eMolFrag, please raise an
issue on GitHub issues page:
https://github.com/liutairan/eMolFrag/issues

A web server which can provide fragmentation service:
http://brylinski.cct.lsu.edu/content/emolfrag-webserver

Molecular synthesis tool, eSynth, is available at :
http://brylinski.cct.lsu.edu/content/molecular-synthesis

11

https://github.com/liutairan/eMolFrag
http://brylinski.cct.lsu.edu/content/emolfrag-standalone-package
https://github.com/liutairan/eMolFrag/issues
http://brylinski.cct.lsu.edu/content/emolfrag-webserver
http://brylinski.cct.lsu.edu/content/molecular-synthesis


References

[1] Matthew Clark, Richard D Cramer, and Nicole Van Opdenbosch. Valida-
tion of the general purpose tripos 5.2 force field. Journal of Computational
Chemistry, 10(8):982–1012, 1989.

[2] Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias
Rarey. On the art of compiling and using’drug-like’chemical fragment
spaces. ChemMedChem, 3(10):1503–1507, 2008.

[3] Takeshi Kawabata. Build-up algorithm for atomic correspondence be-
tween chemical structures. Journal of chemical information and modeling,
51(8):1775–1787, 2011.

[4] Greg Landrum. Rdkit: Open-source cheminformatics. Online).
http://www. rdkit. org. Accessed, 3(04):2012, 2006.

[5] Misagh Naderi, Chris Alvin, Yun Ding, Supratik Mukhopadhyay, and
Michal Brylinski. A graph-based approach to construct target-focused
libraries for virtual screening. Journal of cheminformatics, 8(1):14, 2016.

[6] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Van-
dermeersch, and Geoffrey R Hutchison. Open babel: An open chemical
toolbox. Journal of cheminformatics, 3(1):33, 2011.

12


	Introduction
	Installation and Setup
	Using eMolFrag
	Output
	Online Resources

