Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/sparseLDA
26 June 2024, 13:11:27 UTC
  • Code
  • Branches (29)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1-5
    • refs/tags/0.1-6
    • refs/tags/0.1-7
    • refs/tags/0.1-9
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • a9bb821
  • /
  • R
  • /
  • smda.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:56af5c56423cb2bb9c642062dbb506218271a1f0
origin badgedirectory badge Iframe embedding
swh:1:dir:6c55cd6f4a88a5ab77e39e1bc515a4b63c7a84c9
origin badgerevision badge
swh:1:rev:046813c7361fb51046a7e264bed101ca0099e509
origin badgesnapshot badge
swh:1:snp:d7f1bd44805d3850bf2367d8502c29f2c15bcc39
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 046813c7361fb51046a7e264bed101ca0099e509 authored by Line Clemmensen on 28 February 2009, 00:00:00 UTC
version 0.1-5
Tip revision: 046813c
smda.R
smda <- function (x, ...) UseMethod("smda")


smda.default <- function(x, y, Z = NULL, Rj = NULL, lambda=1e-6, stop, maxIte=50, trace=FALSE, tol=1e-4, ...){
  ##
  ## smda performs Sparse Mixture Disciminant Analysis
  ## Solving: argmin{|(Y*theta-X*b)|_2^2 + t*|beta|_1 + lambda*|beta|_2^2}
  ##
  ## INPUT:
  ## x      : matrix of n observations down the rows and p variable columns. The
  ##          columns are assumed normalized
  ## Z      : matrix initializing the probabilities representing the groups
  ## Rj     : K length vector containing the number of subclasses in each of
  ##          the K classes
  ## lambda : the weight on the L2-norm for elastic net regression. Default: 1e-6
  ## stop   : nonzero STOP will perform
  ##          elastic net regression with early stopping. If STOP is negative, its 
  ##          absolute value corresponds to the desired number of variables. If STOP
  ##          is positive, it corresponds to an upper bound on the L1-norm of the
  ##          b coefficients. There is a one to one correspondence between stop
  ##          and t.
  ## maxIte : Maximum number of iterations. Default: 50.
  ## trace  : trace = FALSE turns printing of RSS off and trace = TRUE turns it on.
  ## tol    : Tolerance for the stopping criterion (change in RSS). Default: 1e-4
  ##
  ## OUTPUT:
  ## $beta   : The regression parameters
  ## $theta  : Optimal scores
  ## $Z      : Updated subclass probabilities
  ## $rss    : Residual Sum of Squares at each itearation
  ##
  ## Author: Line H. Clemmensen, IMM, DTU, lhc@imm.dtu.dk
  ## Based on the elastic net algorithm by Hui Zou and Trevor Hastie
  ##


  ## this is stright from nnet:::formula
  class.ind <- function(cl) {
    n <- length(cl)
    x <- matrix(0, n, length(levels(cl)))
    x[(1:n) + n * (as.vector(unclass(cl)) - 1)] <- 1
    dimnames(x) <- list(names(cl), levels(cl))
    x
  }

  if(is.factor(y))
    {
      classes <- levels(y)
      factorY <- y
      y <- class.ind(y)
    } else {
      if(is.null(colnames(y))) colnames(y) <- paste("class", 1:ncol(y), sep = "")
      classes <- colnames(y)
      factorY <- factor(colnames(y)[apply(y, 1, which.max)])
    }

  if(is.null(Rj)) Rj <- rep(3, length(classes))
  if(length(Rj) == 1) Rj <- rep(Rj, length(classes))
 
  classKey <- rep(classes, times = Rj)

  subClasses <- classKey
  for(i in seq(along = classes))
    {
      tmp <- subClasses[subClasses == classes[i]]
      subClasses[subClasses == classes[i]] <- paste(tmp, seq(along = tmp), sep = "|")
    }
  
  if(!is.matrix(x)) x <- as.matrix(x)
  predNames <- colnames(x)

  N <- dim(x)[1]
  p <- dim(x)[2]
  K <- length(Rj) ## number of classes
  
  ## make Z from y
  if(is.null(Z))
    {
      library(mda)
      tmp <- mda.start(x, factorY, subclasses = Rj,  start.method = "lvq")
      Z <- matrix(0, nrow = nrow(x), ncol = sum(Rj))
      for(i in seq(along = tmp))
        {
          colIndex <- which(classKey == names(tmp)[i])
          rowIndex <- which(factorY == names(tmp)[i])
          Z[rowIndex, colIndex] <- tmp[[i]]
        }
      rm(tmp)
    }

  colnames(Z) <- subClasses
  factorSubY <- factor(colnames(Z)[apply(Z, 1, which.max)])

  R <- dim(Z)[2] ## number of subclasses
  RSSold <- 1e8 
  RSS <- 1e6
  ite <- 0
  Zhat <- matrix(0,N,R-1)
  Dp <- apply(Z,2,sum)
  Dp_inv <- diag(1/sqrt(Dp/N)) ## R x R
  theta <- 1/sum(diag(Dp/N))*diag(rep(1,R))[,1:(R-1)]/R
  Ztheta <- Z%*%theta  ## N x R-1
  rss <- rep(0,maxIte)
  b <- matrix(0,p,R-1)
  if (length(stop)< (R-1)){
    stop <- rep(stop[1],1,R-1)
  }
  if (stop[1]<0) sparse <- "varnum" else sparse <- "penalty" 


  while (abs(RSSold-RSS)/RSS > tol & ite < maxIte){ 
    RSSold <- RSS
    ite <- ite + 1
    ## 1. Estimate beta:    
    for (j in 1:(R-1)){
      Zc <- Ztheta[,j]
      beta<- solvebeta(x, Zc, paras=c(lambda, abs(stop[j])),sparse=sparse)
      b[,j] <- t(beta)
      Zhat[,j] <- x%*%b[,j]
    }    

    ## 2. Optimal scores: (balanced Procrustes problem)
    B <- t(Z)%*%Zhat
    sb <- svd(B,nu=R-1,nv=R-1)
    theta.old <- theta
    theta <- Dp_inv%*%sb$u%*%t(sb$v)
    Ztheta <- Z%*%theta
    RSS <- sum((Ztheta-Zhat)*(Ztheta-Zhat))
    rss[ite] <- RSS
    if (trace){
      cat('ite: ', ite, ' RSS: ', RSS,'\n')
    }

    ## 3. update parameter estimates:
    Sigma <- matrix(0,R-1,R-1)
    mu <- matrix(0,(R-1)*R,K)
    dim(mu) <- c(R-1,R,K)
    for (i in 1:K){
      IK <- (sum(Rj[1:i-1])+1):(sum(Rj[1:i-1])+Rj[i])
      Ik <- apply(Z[,IK, drop = FALSE]>0,1,any)
      Ik.length <- sum(Ik)
      for (j in 1:Rj[i]){
        mu[,IK[j],i] = apply(matrix(1,Ik.length,1)%*%t(Z[Ik,IK[j]])%*%Zhat[Ik,,drop = FALSE],2,sum)/Dp[IK[j]]
        Sigma = Sigma + t(Zhat[Ik,,drop = FALSE]-matrix(1,Ik.length,1)%*%t(matrix(mu[,IK[j],i])))%*%(Z[Ik,IK[j]]%*%matrix(1,1,Ik.length))%*%(Zhat[Ik,,drop = FALSE]-
          matrix(1,Ik.length,1)%*%t(matrix(mu[,IK[j],i])))/(Ik.length-Rj[i])
      }
    }
    Sigma_inv <- solve(Sigma + 1e-2*diag(rep(1,R-1)))

    for (i in 1:K){
      IK <- (sum(Rj[1:i-1])+1):(sum(Rj[1:i-1])+Rj[i])
      Ik <- apply(Z[,IK,drop = FALSE]>0,1,any)
      Ik.length <- sum(Ik)
      Dmahal_K <- matrix(0,Ik.length,Rj[i])
      for (j in 1:Rj[i]){
        Dmahal_K[,j] <- diag((Zhat[Ik,,drop = FALSE]-matrix(1,Ik.length,1)%*%t(matrix(mu[,IK[j],i])))%*%Sigma_inv%*%t(Zhat[Ik,,drop = FALSE]-
                                                                                                         matrix(1,Ik.length,1)%*%t(matrix(mu[,IK[j],i]))))
      }
      sum_K <- apply(Z[Ik,IK, drop = FALSE]*exp(-Dmahal_K/2),1,sum)
      for (j in 1:Rj[i]){
        Z[Ik,IK[j]] <- Z[Ik,IK[j]]*exp(-Dmahal_K[,j]/2)/(sum_K+1e-6)
      }
      Z[Ik,IK] <- Z[Ik,IK]/(apply(Z[Ik,IK, drop = FALSE],1,sum)*rep(1,1,Rj[i]))
    }
    Ztheta <- Z%*%theta
    Dp <- apply(Z,2,sum)
    Dp_inv <- diag(1/sqrt(Dp/N)) ## R x R
  }

  ## Remove trivial directions
  Ik <- sb$d > 1e-6
  M <- sum(Ik)
  theta <- theta[,1:M]
  Ztheta <- Z%*%theta
  b <- b[,1:M]
  Zhat <- Zhat[,1:M]
  for (j in 1:M){
    Zc <- Ztheta[,j]
    beta<- solvebeta(x, Zc, paras=c(lambda, abs(stop[j])),sparse=sparse)
    b[,j] <- t(beta)
    Zhat[,j] <- x%*%b[,j]
  }
  if (trace){
    RSS <- sum((Ztheta-Zhat)*(Ztheta-Zhat))
    cat('final update, RSS: ', RSS,'\n')
  }


  notZero <- apply(b, 1, function(x) any(x != 0))
  b <- b[notZero,,drop = FALSE]
  origP <- ncol(x)
  x <- x[, notZero, drop = FALSE]
  varNames <- colnames(x)
  
  sl <- x %*% b
  colnames(sl) <- paste("score", 1:ncol(sl), sep = "")
  lobj<-lda(sl, factorSubY, ...)

  structure(
            list(call = match.call(),
                 beta = b,
                 theta = theta,
                 Z = Z,
                 Zhat = Zhat,
                 Rj = Rj,
                 varNames = varNames,
                 varIndex = which(notZero),
                 origP = origP,
                 rss = rss[1:ite],
                 fit = lobj,
                 classes = classes,
                 lambda = lambda,
                 stop = stop),
            class = "smda")
}


predict.smda <- function(object, newdata = NULL, ...)
  {
    if(!is.matrix(newdata)) newdata <- as.matrix(newdata)
    if(!is.null(object$varNames))
      {
        newdata <- newdata[, object$varNames, drop = FALSE]
      } else {
        if(ncol(newdata) != object$origP) stop("dimensions of training and testing X different")
        newdata <- newdata[, object$varIndex, drop = FALSE]
      }
    x <- newdata %*% object$beta
    subPred <- predict(object$fit, newdata = x, ...)
    ## We compute the posterior probs per class (not subclass) and get the class from that      
    subPred$class <- unlist(lapply(strsplit(as.character(subPred$class), "\\|"), function(x)x[1]))
    subPred$class <- factor(subPred$class, levels = object$classes)
    subPred
  }


print.smda <- function(x, digits = max(3, getOption("digits") - 3), ...)
  {
    cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")

    classInfo <- paste(paste(x$classes, " (", x$Rj, ")", sep = ""), collapse = ", ")

    if(all(x$stop < 0))
      {
        stopVal <- paste(-x$stop[1], "variables")
      } else {
         stopVal <- paste(
                          paste(format(x$stop, digits = digits),
                                collapse = ", "),
                          "L1 bounds")
      }
    
      cat("lambda =", format(x$lambda, digits = digits),
        "\nstop =", stopVal,
        "\nsubclasses =", classInfo,
        "\n\n")

    top <- if(!is.null(x$varNames)) x$varNames else paste("Predictor", x$varIndex, sep = "")
    varOrder <- if(is.matrix(x$beta)) order(apply(abs(x$beta), 1, sum)) else order(abs(x$beta))
    top <- top[varOrder]
    top <- top[1:min(5, length(top))]
    top <- paste(top, collapse = ", ")
    
    if(nrow(x$beta) > 5)
      {
        cat("Top 5 predictors (out of ",
            length(x$varIndex),
            "):\n\t",
            top,
            sep = "")
      } else {
        cat("Predictors:\n\t",
            top,
            "\n",
            sep = "")
      }
    invisible(x)
  }

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API