\name{parallel} \alias{parallel} \title{ Parallel Analysis of a Correlation Matrix} \description{ This function gives the distribution of the eigenvalues of correlation matrices of random uncorrelated standardized normal variables. The mean and a selected centile of this distribution are returned. } \usage{ parallel(subject = 100, var = 10, rep = 100, cent = 0.05) } \arguments{ \item{subject}{numeric: Nmber of subjects (default is 100)} \item{var}{ numeric: Number of variables (default is 10) } \item{rep}{ numeric: Number of replications of the correlation matrix (default is 100)} \item{cent}{ numeric: Centile of the distribution on which the decision is made (default is 0.05)} } \details{ Note that if the decision is based on a centile value rather than on the mean, care must be taken with the number of replications (\emph{rep}). In fact, the smaller the centile (\emph{cent}), the bigger the number of replications. } \value{ \item{eigen}{ Data frame consisting of mean and the centile of the eigenvalues distribution } \item{eigen$mevpea}{ Mean of the eigenvalues distribution} \item{eigen$sevpea}{ Standard deviation of the eigenvalues distribution} \item{eigen$qevpea}{ Centile of the eigenvalues distribution} \item{eigen$sqevpea}{ Standard error of the centile of the eigenvalues distribution} \item{subject}{ Number of subjects} \item{variables}{ Number of variables} \item{centile}{ Selected centile} Otherwise, returns a summary of the parallel analysis. } \references{ Drasgow, F. and Lissak, R. (1983) Modified parallel analysis: a procedure for examining the latent dimensionality of dichotomously scored item responses. \emph{Journal of Applied Psychology, 68}(3), 363-373. Hoyle, R. H. and Duvall, J. L. (2004). Determining the number of factors in exploratory and confirmatory factor analysis. In D. Kaplan (Ed.): \emph{The Sage handbook of quantitative methodology for the social sciences}. Thousand Oaks, CA: Sage. Horn, J. L. (1965). A rationale and test of the number of factors in factor analysis. \emph{Psychometrika, 30}, 179-185. } \author{ Gilles Raiche, Universite du Quebec a Montreal \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/} } \seealso{ \code{\link{plotuScree}}, \code{\link{nScree}}, \code{\link{plotnScree}}, \code{\link{plotParallel}} } \examples{ ## SIMPLE EXAMPLE OF A PARALLEL ANALYSIS ## OF A CORRELATION MATRIX WITH ITS PLOT data(dFactors) eig <- dFactors$Raiche$eigenvalues subject <- dFactors$Raiche$nsubjects var <- length(eig) rep <- 100 cent <- 0.95 results <- parallel(subject,var,rep,cent) results ## IF THE DECISION IS BASED ON THE CENTILE USE qevpea INSTEAD ## OF mevpea ON THE FIRST LINE OF THE FOLLOWING CALL plotuScree(eig, main = "Parallel Analysis" ) lines(1:var, results$eigen$qevpea, type="b", col="green" ) ## ANOTHER SOLUTION IS SIMPLY TO plotParallel(results) ## RESULTS # $eigen # mevpea sevpea qevpea sevpea.1 # V1 1.5421626 0.09781869 1.4037201 0.020670924 # V2 1.3604323 0.05728471 1.2768656 0.012105332 # V3 1.2249034 0.04704870 1.1482431 0.009942272 # V4 1.1189148 0.03662555 1.0605407 0.007739666 # V5 1.0221635 0.04048780 0.9599296 0.008555832 # V6 0.9318382 0.04053704 0.8647949 0.008566237 # V7 0.8381154 0.04026090 0.7758708 0.008507883 # V8 0.7493151 0.04729122 0.6727706 0.009993521 # V9 0.6568985 0.04664676 0.5756055 0.009857334 # V10 0.5552561 0.04942935 0.4800394 0.010445348 # $subject # [1] 100 # $variables # [1] 10 # $centile # [1] 0.05 # attr(,"class") # [1] "parallel" } \keyword{ multivariate }