Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 1c738b1
  • /
  • prelude
  • /
  • Tactics.ec
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:57d9e688c721ac5acb09a53af4b8bfb1e0d7b6ab
directory badge Iframe embedding
swh:1:dir:9958a3972c0f248572dc78acd9d6308b4cdf3528
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tactics.ec
(* --------------------------------------------------------------------
 * Copyright (c) - 2012--2016 - IMDEA Software Institute
 * Copyright (c) - 2012--2018 - Inria
 * Copyright (c) - 2012--2018 - Ecole Polytechnique
 *
 * Distributed under the terms of the CeCILL-B-V1 license
 * -------------------------------------------------------------------- *)

(* -------------------------------------------------------------------- *)
lemma nosmt unitW (P : unit -> bool): P tt => forall x, P x by [].

(* -------------------------------------------------------------------- *)
lemma nosmt trueI : true by [].

lemma nosmt falseW (c : bool) : false => c by [].

lemma nosmt boolW (P : bool -> bool) :
  P true => P false => forall b, P b by [].

(* -------------------------------------------------------------------- *)
lemma nosmt andW a b c : (a => b => c) => (a /\ b) => c by [].

lemma nosmt andWl a b : (a /\ b) => a by [].
lemma nosmt andWr a b : (a /\ b) => b by [].

lemma nosmt andI a b : a => b => (a /\ b) by [].

(* -------------------------------------------------------------------- *)
lemma nosmt orW a b c : (a => c) => (b => c) => (a \/ b) => c by [].

lemma nosmt orIl a b : a => a \/ b by [].
lemma nosmt orIr a b : b => a \/ b by [].

(* -------------------------------------------------------------------- *)
lemma nosmt andaW a b c : (a => b => c) => (a && b) => c by [].

lemma nosmt andaWl a b : (a && b) => a by [].
lemma nosmt andaWr a b : (a && b) => (a => b) by [].

lemma nosmt andaI a b : a => (a => b) => (a && b) by [].

(* -------------------------------------------------------------------- *)
lemma nosmt oraW a b c : (a => c) => (!a => b => c) => (a || b) => c by [].

lemma nosmt oraIl a b : a => a || b by [].
lemma nosmt oraIr a b : (!a => b) => a || b by [].

(* -------------------------------------------------------------------- *)
lemma nosmt iffW a b c : ((a => b) => (b => a) => c) => (a <=> b) => c by [].
lemma nosmt iffI a b : (a => b) => (b => a) => (a <=> b) by [].

lemma nosmt iffLR a b : (a <=> b) => a => b by [].
lemma nosmt iffRL a b : (a <=> b) => b => a by [].

(* -------------------------------------------------------------------- *)
lemma nosmt ifW a bt bf c :
  (a => bt => c) => (!a => bf => c) => (if a then bt else bf) => c
by [].

lemma nosmt ifI a bt bf :
  (a => bt) => (!a => bf) => if a then bt else bf
by [].

(* -------------------------------------------------------------------- *)
lemma nosmt orDandN : forall a b, ((b /\ a) \/ (!b /\ a)) = a by [].
lemma nosmt andDorN : forall a b, ((b /\ a) /\ (!b /\ a)) = false by [].

(* -------------------------------------------------------------------- *)
lemma nosmt cut_ a b : a => (a => b) => b by [].

lemma nosmt boolWE (p : bool -> bool) x :
   (x => p true) => (!x => p false) => p x
by [].

lemma nosmt dup p q : (p => p => q) => p => q by [].

lemma nosmt negeqF: forall (x:bool), !x => (x =  false) by [].
lemma nosmt negbTE: forall (x:bool), !x => (x => false) by [].

(* -------------------------------------------------------------------- *)
lemma nosmt eq_refl  : forall (x : 'a), x = x by [].
lemma nosmt eq_sym   : forall (x y : 'a), x = y <=> y = x by [].
lemma nosmt eq_trans : forall (x y z : 'a), x = y => y = z => x = z by [].
lemma nosmt eq_iff   : forall a b, (a = b) <=> (a <=> b) by [].

lemma nosmt eq_sym_imp : forall (x y : 'a), x = y => y = x by [].

(* -------------------------------------------------------------------- *)
lemma nosmt congr1 ['b 'a] :
  forall (f : 'a -> 'b) (x1 x2 : 'a),
    x1 = x2 => f x1 = f x2
by [].

lemma nosmt if_congr ['a] (e e' : bool) (c1 c2 c1' c2': 'a) :
     e = e' => c1 = c1' => c2 = c2'
  => (if e then c1 else c2) = (if e' then c1' else c2')
by [].

lemma nosmt eq_ind ['a] x y (f:'a -> bool) : x = y => f x => f y by [].

(* -------------------------------------------------------------------- *)
lemma nosmt and3_s1 b1 b2 b3 : b1 => b2 && b3 => b1 && b2 && b3 by [].
lemma nosmt and3_s2 b1 b2 b3 : b2 => b1 && b3 => b1 && b2 && b3 by [].
lemma nosmt and3_s3 b1 b2 b3 : b3 => b1 && b2 => b1 && b2 && b3 by [].

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top