"rqss.fit" <-
function (x, y, tau = 0.5, method = "sfn", rhs = NULL, control, ...)
{
if(is.null(rhs)) rhs <- (1 - tau) * t(x) %*% rep(1,length(y))
else tau <- 0.5
fit <- switch(method,
sfn = rq.fit.sfn(x, y, tau = tau, rhs = rhs, control = control, ...),
sfnc = rq.fit.sfnc(x, y, tau = tau, rhs = rhs, control = control, ...), {
what <- paste("rq.fit.", method, sep = "")
if (exists(what, mode = "function"))
(get(what, mode = "function"))(x, y, ...)
else stop(paste("unimplemented method:", method))
})
fit$contrasts <- attr(x, "contrasts")
fit$resid <- c(y - x %*% fit$coef)
fit
}
"untangle.specials" <-
function (tt, special, order = 1)
{
spc <- attr(tt, "specials")[[special]]
if (length(spc) == 0)
return(list(vars = character(0), terms = numeric(0)))
facs <- attr(tt, "factor")
fname <- dimnames(facs)
ff <- apply(facs[spc, , drop = FALSE], 2, sum)
list(vars = (fname[[1]])[spc], terms = seq(ff)[ff & match(attr(tt,
"order"), order, nomatch = 0)])
}
"qss" <-
function (x, constraint = "N", lambda = 1, ndum = 0, dummies = NULL,
w = rep(1, length(x)))
{
if (is.matrix(x)) {
if (ncol(x) == 2)
qss <- qss2(x, constraint = constraint, dummies = dummies,
lambda = lambda, ndum = ndum, w = w)
else if (ncol(x) == 1)
x <- as.vector(x)
else stop("qss objects must have dimension 1 or 2")
}
if (is.vector(x))
qss <- qss1(x, constraint = constraint, lambda = lambda,
dummies = dummies, ndum = ndum, w = w)
qss
}
"qss2" <-
function(x, y, constraint = "N", lambda = 1, ndum= 0, dummies = NULL, w=rep(1,length(x))){
#
# Sparse Additive Quantile Smoothing Spline Models - Bivariate (Triogram) Module
#
# This function returns a structure intended to make model.matrix for a bivariate
# nonparametric component of a model formula specified by a call to rqss(). A sparse form
# of the Frisch Newton algorithm is eventually called to compute the estimator.
# An optional convexity/concavity constraint can be specified. If
# the formula consists of a single qss component then the estimator solves the
# following variational problem:
#
# min sum rho_tau (y_i - g(x_i)) + lambda V(grad(g))
#
# where V(f) denotes the total variation of the function f. The solution is a piecewise
# linear function on the Delaunay triangulation formed by the observed (x_i,y_i) points.
# Additive models can consist
# of several components of this form plus partial linear and univariate qss components.
# To resolve the identifiability problem we delete the first column of the qss design
# components. On return F contains the fidelity portion of the design, A the penalty
# contribution of the design, R the constraint portion, and r the rhs of the constraints.
#
# Constraints are specified by the constraint argument:
#
# N none
# V convex
# C concave
#
# Author: Roger Koenker April 2, 2003
#
# For a prototype see triogram in ~roger/projects/tv/cobar/.RData on ysidro.
#
# Warning: Under development...todo:
#
# o weights
# o dummy x's
# o tau's
# o lambda's
# o ...
#
stopifnot(requireNamespace("tripack"))
#
y <- x[,2]
x <- x[,1]
n <- length(x)
if (n != length(y))
stop("xy lengths do not match")
f <- triogram.fidelity(x, y, ndum = ndum, dummies = dummies)
F <- f$F
A <- triogram.penalty(f$x, f$y)
switch(constraint, V = {
R <- A
r <- rep(0, nrow(R))
}, C = {
R <- -A
r <- rep(0, nrow(R))
}, N = {
R = NULL
r = NULL
})
list(x = list(x = f$x, y = f$y), F = F[, -1], dummies = f$dummies,
lambda = lambda, A = A[, -1], R = R[, -1], r = r)
}
"qss1" <-
function (x, constraint = "N", lambda = 1, dummies = dummies,
ndum = 0, w = rep(1, length(x))){
#
# Sparse Additive Quantile Smoothing Spline Models - Univariate Module
#
# This function returns a structure intended to make model.matrix for a univariate
# nonparametric component of a model formula specified by a call to rq(). A sparse form
# of the Frisch Newton algorithm is eventually called to compute the estimator.
# Optional monotonicity and/or convexity/concavity constraints can be specified. If
# the formula consists of a single qss component then the estimator solves the
# following variational problem:
#
# min sum rho_tau (y_i - g(x_i)) + lambda V(g')
#
# where V(f) denotes the total variation of the function f. The solution is a piecewise
# linear function with "knots" at the observed x_i points. Additive models can consist
# of several components of this form plus partial linear and triogram components.
# To resolve the identifiability problem we delete the first column of the qss design
# components. On return F contains the fidelity portion of the design, A the penalty
# contribution of the design, R the constraint portion, and r the rhs of the constraints.
#
# Constraints are specified by the constraint argument:
#
# N none
# I monotone increasing
# D monotone decreasing
# V convex
# C concave
# CI concave and monotone increasing
# ... etc
#
# Author: Roger Koenker February 27, 2003
#
# Warning: Under development...todo:
#
# o weights
# o dummy x's
# o tau's
# o lambda's
# o ...
#
#
xun <- unique(x[order(x)])
h <- diff(xun)
nh <- length(h)
nx <- length(x)
p <- nh + 1
B <- new("matrix.csr", ra = c(rbind(-1/h, 1/h)), ja = as.integer(c(rbind(1:nh,
2:(nh + 1)))), ia = as.integer(2 * (1:(nh + 1)) - 1),
dimension = as.integer(c(nh, nh + 1)))
makeD <- function(p) {
new("matrix.csr", ra = c(rbind(rep(-1, (p - 1)), rep(1,
(p - 1)))), ja = as.integer(c(rbind(1:(p - 1), 2:p))),
ia = as.integer(2 * (1:p) - 1), dimension = as.integer(c(p -
1, p)))
}
D <- makeD(nh)
A <- D %*% B
if (length(xun) == length(x)){
F <- new("matrix.csr", ra = rep(1, nx), ja = as.integer(rank(x)),
ia = 1:(nx + 1), dimension = as.integer(c(nx, nx)))
}
else {
F <- new("matrix.csr", ra = rep(1, nx), ja = as.integer(factor(x)),
ia = 1:(nx + 1), dimension = as.integer(c(nx, length(xun))))
}
switch(constraint,
V = { R <- A;
r <- rep(0,nrow(R))
},
C = { R <- -A;
r <- rep(0,nrow(R))
},
I = { R <- makeD(p)
r <- rep(0,p-1)
},
D = { R <- -makeD(p)
r <- rep(0,p-1)
},
VI = { R <- makeD(p)
R <- rbind(R,A)
r <- rep(0,nrow(R))
},
VD = { R <- -makeD(p)
R <- rbind(R,A)
r <- rep(0,nrow(R))
},
CI = { R <- makeD(p)
R <- rbind(R,-A)
r <- rep(0,nrow(R))
},
CD = { R <- -makeD(p)
R <- rbind(R,-A)
r <- rep(0,nrow(R))
},
N = { R=NULL; r=NULL}
)
list(x = list(x=xun), F=F[,-1], lambda = lambda, A=A[,-1], R=R[,-1], r=r)
}
"plot.qss1" <-
function(x, rug = TRUE, jit = TRUE, add = FALSE, ...)
{
if(!add) plot(x[,1],x[,2],type = "n", ...)
lines(x[,1],x[,2], ...)
if(rug) {
if(jit)
rug(jitter(x[,1]))
else rug(x[,1])
}
}
"plot.qss2" <-
function (x, render = "contour", ncol = 100, zcol = NULL, ...)
{
stopifnot(requireNamespace("tripack"))
y <- x[, 2]
z <- x[, 3]
x <- x[, 1]
tri <- tripack::tri.mesh(x, y)
if (render == "rgl") {
if(!requireNamespace("rgl",quietly=TRUE))
stop("The package rgl is required")
collut <- terrain.colors(ncol)
if (!length(zcol))
zcol <- z
if (max(z) > max(zcol) || min(z) < min(zcol))
warning("fitted z values out of range of zcol vector")
zlim <- range(zcol)
colz <- ncol * (z - zlim[1])/(zlim[2] - zlim[1]) + 1
colz <- collut[colz]
s <- c(t(tripack::triangles(tri)[, 1:3]))
rgl::rgl.triangles(x[s], y[s], z[s], col = colz[s])
}
else {
stopifnot(requireNamespace("akima"))
if(render == "contour"){
plot(x, y, type = "n", ...)
contour(akima::interp(x, y, z), add = TRUE, frame.plot = TRUE, ...)
tripack::convex.hull(tri, plot.it = TRUE, add = TRUE)
}
else if(render == "persp")
persp(akima::interp(x, y, z, ), theta = -40, phi = 20, xlab = "x",
ylab = "y", zlab = "z", ...)
else stop(paste("Unable to render: ",render))
}
}
plot.rqss <-
function (x, rug = TRUE, jit = TRUE, bands = NULL, coverage = 0.95,
add = FALSE, shade = TRUE, select = NULL, pages = 0, titles = NULL, ...)
{
SetLayout <- function(m, p) {
# Shamelessly cribbed from mgcv
# m is the number of plots
# p is the number of pages
if (p > m)
p <- m
if (p < 0)
p <- 0
if (p != 0) {
q <- m%/%p
if ((m%%p) != 0) {
q <- q + 1
while (q * (p - 1) >= m) p <- p - 1
}
c <- trunc(sqrt(q))
if (c < 1)
c <- 1
r <- q%/%c
if (r < 1)
r <- 1
while (r * c < q) r <- r + 1
while (r * c - q > c && r > 1) r <- r - 1
while (r * c - q > r && c > 1) c <- c - 1
oldpar <- par(mfrow = c(r, c))
}
else oldpar <- par()
return(oldpar)
}
m <- length(x$qss)
if (m == 0)
stop("No qss object to plot")
if(length(select)) {
if(all(select %in% 1:m))
oldpar <- SetLayout(length(select), pages)
else
stop(paste("select must be in 1:",m,sep=""))
}
else
oldpar <- SetLayout(m, pages)
if ((pages == 0 && prod(par("mfrow")) < m && dev.interactive()) ||
pages > 1 && dev.interactive())
ask <- TRUE
else ask <- FALSE
if (ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
qssnames <- names(x$qss)
if(length(titles)){
if(length(titles) != length(qssnames))
stop("Length of titles doesn't match length of qssnames")
}
else{
titles <- paste("Effect of ", qssnames)
}
if (length(bands)) {
rdf <- x$n - x$edf
if (any(unlist(lapply(x$qss, function(x) ncol(x$xyz) == 3))))
warning("Can't plot confidence bands in 3D (yet)")
band <- as.list(rep(NA, m))
V <- summary(x, cov = TRUE, ...)$Vqss
"summary.qss1" <- function(object, V, ngrid = 400, ...) {
x <- object$xyz[, 1]
eps <- 0.01
newd <- data.frame(x = seq(min(x) + eps, max(x) -
eps, length = ngrid))
G <- predict(object, newd, ...)
ones <- as.matrix.csr(matrix(1, nrow(G$D), 1))
D <- cbind(ones, G$D)
S <- as.matrix(D %*% V %*% t(D))
se <- sqrt(diag(S))
cv <- qt(1 - (1 - coverage)/2, rdf)
if (bands %in% c("uniform","both")) {
E <- eigen(as.matrix(V))
B <- E$vectors %*% diag(sqrt(pmax(0,E$values))) %*% t(E$vectors)
D <- as.matrix(D)
BX1 <- B %*% t(D[-1, ])
BX1 <- BX1/sqrt(apply(BX1^2, 2, sum))
BX0 <- B %*% t(D[-nrow(D), ])
BX0 <- BX0/sqrt(apply(BX0^2, 2, sum))
kappa <- sum(sqrt(apply((BX1 - BX0)^2, 2, sum)))
cvu <- critval(kappa, alpha = 1 - coverage, rdf = rdf)
if(bands == "both") cv <- c(cvu,cv)
else cv <- cvu
}
list(pred = data.frame(x = G$x, y = G$y, se = se),
cv = cv)
}
}
if(!length(select))
select <- 1:m
for (i in select) {
qss <- x$qss[[i]]$xyz
if (ncol(qss) == 3) {
qss[, 3] <- x$coef[1] + qss[, 3]
plot.qss2(qss, ...)
}
else if (ncol(qss) == 2) {
if (length(bands)) {
if (is.na(x$coef["(Intercept)"]))
stop("rqss confidence bands require an intercept parameter")
B <- summary(x$qss[[i]], V[[i]], ...)
cv <- B$cv
B <- B$pred
B$y <- B$y + x$coef["(Intercept)"]
bandcol <- c("grey85","grey65")
for(k in 1:length(cv)){
if (add || k > 1)
if(shade){
polygon(c(B$x,rev(B$x)),
c(B$y - cv[k] * B$se,rev(B$y + cv[k] * B$se)),
col = bandcol[k], border = FALSE)
}
else
matlines(B$x, cbind(B$y, B$y + cv[k] * cbind(-B$se,
B$se)), lty = c(1, 2, 2), col = c("black", "blue", "blue"))
else {
matplot(B$x, B$y + cv[k] * cbind(-B$se, B$se),
xlab = paste(qssnames[i]), ylab = "Effect",
type = "n", ...)
if(shade){
polygon(c(B$x,rev(B$x)),
c(B$y - cv[k] * B$se,rev(B$y + cv[k] * B$se)),
col = bandcol[k], border = FALSE)
}
else{
lines(B$x, B$y + cv * B$se, lty = 2, ...)
lines(B$x, B$y - cv * B$se, lty = 2, ...)
}
}
lines(B$x, B$y, ...)
}
band[[1]] <- list(x = B$x, blo = B$y - B$se %o% cv,
bhi = B$y + B$se %o% cv)
if (rug) {
if (jit)
rug(jitter(qss[, 1]))
else rug(qss[, 1])
}
}
else {
qss[, 2] <- x$coef[1] + qss[, 2]
plot.qss1(qss, xlab = paste(qssnames[i]), ylab = "Effect",
rug = rug, jit = jit, add = add, ...)
}
title(titles[i])
}
else stop("invalid fitted qss object")
}
if (pages > 0)
par(oldpar)
if (length(bands))
class(band) <- "rqssband"
else
band <- NULL
invisible(band)
}
"triogram.fidelity" <- function (x, y, ndum=0, dummies = NULL)
{
#Make fidelity block of the triogram design in sparse matrix.csr form
#The rather esoteric match call identifies and handles duplicated xy points
n <- length(x)
A <- as.data.frame(cbind(x,y))
dupA <- duplicated(A)
if(any(dupA)){
x <- x[!dupA]
y <- y[!dupA]
J <- match(do.call("paste",c(A,"\r")),do.call("paste",c(A[!dupA,],"\r")))
z <- new("matrix.csr",ra=rep(1,n), ja=J, ia=1:(n+1),dimension=as.integer(c(n,max(J))))
}
else{
z <- as(n,"matrix.diag.csr")
z <- as(z,"matrix.csr")
}
#Augment with dummy vertices, if any...
if(length(dummies)){
if (is.list(dummies)){
if (all(!is.na(match(c("x", "y"), names(dummies))))){
ndum <- length(dummies$x)
if(length(dummies$y) == ndum){
x <- c(x,dummies$x)
y <- c(y,dummies$y)
zdum <- as.matrix.csr(0,n,ndum)
z <- cbind(z,zdum)
}
else stop("dummies x and y components differ in length")
}
else stop("dummies list lacking x and y elements")
}
else stop("dummies argument invalid (not a list) in triogram.fidelity")
}
else if(ndum > 0){
u <- runif(ndum); v <- runif(ndum)
xd <- min(x) + u * (max(x)-min(x))
yd <- min(y) + v * (max(y)-min(y))
T <- tripack::tri.mesh(x,y)
s <- tripack::in.convex.hull(T,xd,yd)
x <- c(x,xd[s])
y <- c(y,yd[s])
ndum <- sum(s)
zdum <- as.matrix.csr(0,n,ndum)
z <- cbind(z,zdum)
dummies <- list(x = xd[s],y = yd[s])
}
list(x=x,y=y,F=z, dummies = dummies)
}
"triogram.penalty" <- function (x, y, eps = .Machine$double.eps)
{
n <- length(x)
tri <- tripack::tri.mesh(x, y)
bnd <- tripack::on.convex.hull(tri,x,y)
q <- length(tri$tlist)
m <- 13 * n
z <- .Fortran("penalty", as.integer(n), as.integer(m), as.integer(q),
as.double(x), as.double(y), as.integer(bnd),as.integer(tri$tlist),
as.integer(tri$tlptr), as.integer(tri$tlend), rax = double(m),
jax = integer(m), ned = integer(1), as.double(eps), ierr = integer(1),
PACKAGE = "quantreg")[c("rax", "jax", "iax", "ned", "ierr")]
if (z$ierr == 1)
stop("collinearity in ggap")
nnz <- 4 * z$ned
ra <- z$rax[1:nnz]
ja <- z$jax[1:nnz]
ia <- as.integer(1 + 4 * (0:z$ned))
dim <- as.integer(c(z$ned, n))
new("matrix.csr",ra=ra,ja=ja,ia=ia,dimension=dim)
}
predict.rqss <-
function (object, newdata, interval = "none", level = 0.95, ...)
{
ff <- object$fake.formula
Terms <- delete.response(terms(object$formula, "qss"))
Names <- all.vars(parse(text = ff))
if (any(!(Names %in% names(newdata))))
stop("newdata doesn't include some model variables")
ff <- reformulate(ff)
nd <- eval(model.frame(ff, data = newdata), parent.frame())
qssterms <- attr(Terms, "specials")$qss
if (length(qssterms)) {
tmp <- untangle.specials(Terms, "qss")
dropv <- tmp$terms
m <- length(dropv)
if (length(dropv))
PLTerms <- Terms[-dropv]
attr(PLTerms, "specials") <- tmp$vars
}
else {
PLTerms <- Terms
m <- 0
}
if(requireNamespace("MatrixModels") && requireNamespace("Matrix"))
X <- as(MatrixModels::model.Matrix(PLTerms, data = nd, sparse = TRUE),"matrix.csr")
else
X <- model.matrix(PLTerms, data = nd)
p <- ncol(X)
y <- X %*% object$coef[1:p]
X <- as.matrix.csr(X)
if (m > 0) {
for (i in 1:m) {
qss <- object$qss[[i]]
names <- all.vars(Terms[dropv[i]])
names <- names[names %in% Names]
dimnames(qss$xyz)[[2]] <- c(names, "zfit")
newd <- nd[names]
if (ncol(qss$xyz) == 3) {
g <- predict.qss2(qss$xyz, newdata = newd, ...)
y <- y + g$z
if(interval == "confidence")
X <- cbind(X,g$D)
}
else if (ncol(qss$xyz) == 2) {
g <- predict(qss, newdata = newd, ...)
y <- y + g$y
if(interval == "confidence")
X <- cbind(X,g$D)
}
else stop("invalid fitted qss object")
}
}
if(interval == "confidence"){
v <- sqrt(diag(X %*% summary(object, cov = TRUE)$V %*% t(X)))
calpha <- qnorm(1 - (1-level)/2)
y <- cbind(y,y - v*calpha,y + v*calpha)
dimnames(y)[[2]] <- c("yhat","ylower","yupper")
}
y
}
"predict.qss1" <-
function (object, newdata, ...)
{
x <- object$xyz[, 1]
y <- object$xyz[, 2]
if(ncol(newdata)==1)
newdata <- newdata[,1]
else
stop("newdata should have only one column for predict.qss1")
if (any(diff(x) < 0))
stop("x coordinates in qss1 object not monotone")
if (max(newdata) > max(x) || min(newdata) < min(x))
stop("no extrapolation allowed in predict.qss")
bin <- cut(newdata, unique(x), label = FALSE, include.lowest = TRUE)
p <- length(x)
m <- length(newdata)
V <- cbind(bin, bin + 1)
B <- cbind(x[bin + 1] - newdata, newdata - x[bin])/(x[bin +
1] - x[bin])
ra <- c(t(B))
ja <- as.integer(c(t(V)))
ia <- as.integer(c(2 * (1:m) - 1, 2 * m + 1))
dim <- c(m, p)
D <- new("matrix.csr", ra = ra, ja = ja, ia = ia, dimension = dim)
list(x = newdata, y = D %*% y, D = D[, -1])
}
predict.qss2 <- function (object, newdata, ...)
{
x <- object[, 1]
y <- object[, 2]
z <- object[, 3]
tri.area <- function(v) {
0.5 * ((v[2, 1] - v[1, 1]) * (v[3, 2] - v[1, 2]) - (v[3,
1] - v[1, 1]) * (v[2, 2] - v[1, 2]))
}
barycentric <- function(v) {
b <- rep(0, 3)
Area <- tri.area(v[1:3, ])
b[1] <- tri.area(v[c(4, 2, 3), ])/Area
b[2] <- tri.area(v[c(1, 4, 3), ])/Area
b[3] <- tri.area(v[c(1, 2, 4), ])/Area
if (any(b < 0 || b > 1))
stop("barycentric snafu")
b
}
if (is.list(newdata)) {
fnames <- (dimnames(object)[[2]])[1:2]
if (all(!is.na(match(fnames, names(newdata))))) {
newx <- newdata[[fnames[1]]]
newy <- newdata[[fnames[2]]]
}
else (stop("qss object and newdata frame names conflict"))
}
else if (is.matrix(newdata))
if (ncol(newdata) == 2) {
newx <- newdata[, 1]
newy <- newdata[, 2]
}
else (stop("newdata matrix must have 2 columns"))
tri <- tripack::tri.mesh(x, y)
if (!all(tripack::in.convex.hull(tri, newx, newy)))
stop("some newdata points outside convex hull")
p <- length(x)
m <- length(newx)
V <- matrix(0, m, 3)
B <- matrix(0, m, 3)
for (i in 1:m) {
V[i, ] <- unlist(tripack::tri.find(tri, newx[i], newy[i]))
v <- rbind(cbind(x[V[i, ]], y[V[i, ]]), c(newx[i], newy[i]))
B[i, ] <- barycentric(v)
}
ra <- c(t(B))
ja <- as.integer(c(t(V)))
ia <- as.integer(3 * (0:m) + 1)
D <- new("matrix.csr", ra = ra, ja = ja, ia = ia, dimension = c(m,
p))
list(x = newx, y = newy, z = c(D %*% z), D = D[,-1])
}
fitted.rqss <- function(object, ...) (object$X %*% object$coef)[1:object$n]
resid.rqss <- function(object, ...) object$resid[1:object$n]
"rqss" <- function (formula, tau = 0.5, data = parent.frame(), weights,
na.action, method = "sfn", lambda = NULL, contrasts = NULL,
ztol = 1e-05, control = sfn.control(), ...)
{
call <- match.call()
m <- match.call(expand.dots = FALSE)
temp <- c("", "formula", "data", "weights", "na.action")
m <- m[match(temp, names(m), nomatch = 0)]
m[[1]] <- as.name("model.frame")
special <- "qss"
Terms <- if (missing(data))
terms(formula, special)
else terms(formula, special, data = data)
qssterms <- attr(Terms, "specials")$qss
dropx <- NULL
if(length(tau) > 1){
tau <- tau[1]
warning("multiple taus not supported, using first element")
}
if (length(qssterms)) {
tmpc <- untangle.specials(Terms, "qss")
ord <- attr(Terms, "order")[tmpc$terms]
if (any(ord > 1))
stop("qss can not be used in an interaction")
dropx <- tmpc$terms
if (length(dropx))
Terms <- Terms[-dropx]
attr(Terms, "specials") <- tmpc$vars
fnames <- function(x){
fy <- all.names(x[[2]])
if(fy[1] == "cbind") fy <- fy[-1]
fy
}
fqssnames <- unlist(lapply(parse(text = tmpc$vars), fnames))
qssnames <- unlist(lapply(parse(text = tmpc$vars), function(x) deparse(x[[2]])))
}
m$formula <- Terms
ff <- delete.response(terms(formula(Terms)))
if(exists("fqssnames")){
ffqss <- paste(fqssnames, collapse = "+")
ff <- paste(deparse(formula(ff)), "+", ffqss)
}
m <- eval(m, parent.frame())
weights <- model.extract(m, weights)
process <- (tau < 0 || tau > 1)
Y <- model.extract(m, "response")
if(requireNamespace("MatrixModels") && requireNamespace("Matrix")){
X <- MatrixModels::model.Matrix(Terms, m, contrasts, sparse = TRUE)
vnames <- dimnames(X)[[2]]
X <- as(X ,"matrix.csr")
}
else{
X <- model.matrix(Terms, m, contrasts)
vnames <- dimnames(X)[[2]]
}
p <- ncol(X)
pf <- environment(formula)
nrL <- 0
if (method == "lasso") {
if (!length(lambda))
stop("No lambda specified for lasso constraint")
if (length(lambda) == 1)
lambda <- c(0, rep(lambda, p - 1))
if (length(lambda) != p)
stop("lambda must be either of length p, or length 1")
if (any(lambda < 0))
stop("negative lambdas disallowed")
L <- diag(lambda, nrow = length(lambda))
L <- L[which(lambda != 0), , drop = FALSE]
L <- as.matrix.csr(L)
nrL <- nrow(L)
ncL <- ncol(L)
}
if (length(qssterms) > 0) {
F <- as.matrix.csr(X)
qss <- lapply(tmpc$vars, function(u) eval(parse(text = u),
data, enclos = pf))
mqss <- length(qss)
ncA <- rep(0, mqss + 1)
nrA <- rep(0, mqss + 1)
nrR <- rep(0, mqss + 1)
for (i in 1:mqss) {
F <- cbind(F, qss[[i]]$F)
ncA[i + 1] <- ncol(qss[[i]]$A)
nrA[i + 1] <- nrow(qss[[i]]$A)
nrR[i + 1] <- ifelse(is.null(nrow(qss[[i]]$R)), 0,
nrow(qss[[i]]$R))
vnames <- c(vnames, paste(qssnames[i], 1:ncA[i +
1], sep = ""))
}
A <- as.matrix.csr(0, sum(nrA), sum(ncA))
if (sum(nrR) > 0) {
R <- as.matrix.csr(0, sum(nrR), sum(ncA))
nrR <- cumsum(nrR)
}
ncA <- cumsum(ncA)
nrA <- cumsum(nrA)
lambdas <- rep(0, mqss)
for (i in 1:mqss) {
lambdas[i] <- qss[[i]]$lambda
Arows <- (1 + nrA[i]):nrA[i + 1]
Acols <- (1 + ncA[i]):ncA[i + 1]
A[Arows, Acols] <- qss[[i]]$lambda * qss[[i]]$A
if (nrR[i] < nrR[i + 1])
R[(1 + nrR[i]):nrR[i + 1], (1 + ncA[i]):ncA[i +
1]] <- qss[[i]]$R
}
A <- cbind(as.matrix.csr(0, nrA[mqss + 1], p), A)
if (nrR[mqss + 1] > 0) {
R <- cbind(as.matrix.csr(0, nrR[mqss + 1], p), R)
r <- rep(0, nrR[mqss + 1])
}
else {
R <- NULL
r <- NULL
}
if (method == "lasso") {
A <- rbind(cbind(L, as.matrix.csr(0, nrL, ncol(F) - ncL)), A)
}
X <- rbind(F, A)
Y <- c(Y, rep(0, nrow(A)))
rhs <- t(rbind((1 - tau) * F, 0.5 * A)) %*% rep(1, nrow(X))
XpX <- t(X) %*% X
nnzdmax <- XpX@ia[length(XpX@ia)] - 1
if(is.null(control[["nsubmax"]]))
control[["nsubmax"]] <- max(nnzdmax, floor(1000 + exp(-1.6) * nnzdmax^1.2))
if(is.null(control[["nnzlmax"]]))
control[["nnzlmax"]] <- floor(2e+05 - 2.8 * nnzdmax + 7e-04 * nnzdmax^2)
if(is.null(control[["tmpmax"]]))
control[["tmpmax"]] <- floor(1e+05 + exp(-12.1) * nnzdmax^2.35)
fit <- if (length(r) > 0)
rqss.fit(X, Y, tau = tau, rhs = rhs, method = "sfnc",
R = R, r = r, control = control, ...)
else rqss.fit(X, Y, tau = tau, rhs = rhs, method = "sfn", control = control, ...)
for (i in 1:mqss) {
ML <- p + 1 + ncA[i]
MU <- p + ncA[i + 1]
qss[[i]] <- list(xyz = cbind(qss[[i]]$x$x, qss[[i]]$x$y,
c(0, fit$coef[ML:MU])), dummies = qss[[i]]$dummies)
if (ncol(qss[[i]]$xyz) == 2)
class(qss[[i]]) <- "qss1"
else class(qss[[i]]) <- "qss2"
}
names(qss) <- qssnames
fit$qss <- qss
}
else {
X <- as.matrix.csr(X)
nrA <- 0
if (method == "lasso") {
rhs <- t(rbind((1 - tau) * X, 0.5 * L)) %*% rep(1, nrow(X) + nrow(L))
X <- rbind(X, L)
Y <- c(Y, rep(0, nrL))
nrA <- c(nrA, nrL)
}
else
rhs <- NULL
if (length(weights)) {
if (any(weights < 0))
stop("negative weights not allowed")
X <- X * weights
Y <- Y * weights
}
fit <- rqss.fit(X, Y, tau = tau, rhs = rhs, control = control, ...)
fit$nrA <- nrA
}
names(fit$coef) <- vnames
n <- length(fit$resid) - nrL - nrA[length(nrA)]
uhat <- fit$resid[1:n]
Rho <- function(u, tau) sum(u * (tau - (u < 0)))
fit$fidelity <- Rho(uhat, tau)
fit$edf <- sum(abs(uhat) < ztol)
fit$X <- X
fit$n <- n
fit$nrL <- nrL
fit$terms <- Terms
fit$fake.formula <- ff
fit$formula <- formula
fit$method <- method
fit$call <- call
fit$tau <- tau
if (length(qssterms)) {
fit$lambdas <- lambdas
fit$qssnames <- qssnames
fit$nrA <- nrA
fit$ncA <- cumsum(c(p, diff(ncA)))
}
else fit$ncA <- p
attr(fit, "na.message") <- attr(m, "na.message")
class(fit) <- "rqss"
fit
}
"summary.rqss" <- function(object, cov = FALSE, ztol = 1e-5, ...){
resid <- object$resid
coef <- object$coef
lambdas <- object$lambdas
formula <- object$formula
fidelity <- object$fidelity
edf <- object$edf
nrA <- object$nrA
ncA <- object$ncA
nrL <- object$nrL
tau <- object$tau
X <- object$X
p <- ncol(object$X)
m <- length(ncA)
n <- length(resid) - nrL - nrA[m]
uhat <- resid[1:n]
h <- bandwidth.rq(tau, n, hs = TRUE)
if(tau + h > 1)
stop("tau + h > 1: error in summary.rq")
if(tau - h < 0)
stop("tau - h < 0: error in summary.rq")
h <- (qnorm(tau + h) - qnorm(tau - h)) * max(ztol,min(sqrt(var(uhat)),
(quantile(uhat, 0.75) - quantile(uhat, 0.25))/1.34))
f <- c(dnorm(uhat/h)/h,rep(1, length(resid) - n))
D <- t(X) %*% (f * X)
D <- chol(.5 * (D + t(D)), ...)
D <- backsolve(D,diag(p))
D0 <- tau * (1 - tau) * t(X) %*% X
V <- D %*% D0 %*% D
scale <- mean(f)
serr <- sqrt(diag(V))
ptab <- array(coef[1:ncA[1]], c(ncA[1],4))
pnames <- names(coef[1:ncA[1]])
dimnames(ptab) <- list(pnames, c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
ptab[, 2] <- serr[1:ncA[1]]
ptab[, 3] <- ptab[, 1]/ptab[, 2]
ptab[, 4] <- 2 * (1 - pt(abs(ptab[, 3]), n - edf))
if(cov) {
Vcov <- V[1:ncA[1],1:ncA[1]]
Vqss <- as.list(1:(m-1))
}
if(m > 1) {
penalty <- rep(NA, m - 1)
qssedfs <- rep(NA, m - 1)
ntab <- matrix(0, m - 1, 5)
vnames <- sub(".$","",names(coef[ncA[-length(ncA)]+1]))
dimnames(ntab) <- list(vnames, c("EDF", "Lambda", "Penalty", "F value", "Pr(>F)"))
for(i in 2:m) {
ntab[i - 1, 3] <- sum(abs(resid[n + nrL + ((nrA[i - 1] + 1):nrA[i])]))
ntab[i - 1, 1] <- sum(abs(resid[n + nrL + ((nrA[i - 1] + 1):nrA[i])]) > ztol)
v <- V[c(1, (ncA[i-1] + 1):ncA[i]), c(1, (ncA[i-1] + 1):ncA[i])]
v <- .5 * (v + t(v))
if(cov) Vqss[[i-1]] <- v
b <- coef[(ncA[i-1] + 1):ncA[i]]
ntab[i-1, 4] <- t(b) %*% solve(v[-1,-1],b)/ntab[i-1,1]
ntab[i-1, 5] <- 1 - pf(ntab[i-1,4],ntab[i-1,1], n - edf)
}
ntab[,2] <- lambdas
ntab[,3] <- ntab[,3]/lambdas
if(cov)
z <- list(coef = ptab, qsstab = ntab, fidelity = fidelity, tau = tau,
formula = formula, edf = edf, n = n, Vcov = Vcov, Vqss = Vqss, V = V)
else
z <- list(coef = ptab, qsstab = ntab, fidelity = fidelity, tau = tau,
formula = formula, edf = edf, n = n)
}
else
if(cov)
z <- list(coef = ptab, fidelity = fidelity, formula = formula, tau = tau,
edf = edf, n = n, Vcov = Vcov, V = V)
else
z <- list(coef = ptab, fidelity = fidelity, formula = formula, tau = tau,
edf = edf, n = n)
class(z) <- "summary.rqss"
return(z)
}
"plot.summary.rqss" <- function(x, ...)
warning("No plot method for summary.rqss objects: plot the rqss object instead")
"print.rqss" <- function(x, ...) {
cat("Formula:\n")
print(x$formula)
sx <- summary(x)
cat("Quantile fidelity at tau = ", x$tau, "is", sx$fidelity, "\n")
cat("Estimated Model Dimension is", sx$edf, "\n")
}
"logLik.rqss" <- function(object, ...){
n <- object$n
tau <- object$tau
val <- n * (log(tau * (1-tau)) - 1 - log(object$fidelity/n))
attr(val,"n") <- n
attr(val,"df") <- object$edf
class(val) <- "logLik"
val
}
"AIC.rqss" <- function(object, ... , k = 2){
v <- logLik(object)
if(k < 0)
k <- log(attr(v,"n"))
val <- AIC(logLik(object), k = k)
attr(val,"edf") <- attr(v,"df")
val
}
"dither" <- function(x, type = "symmetric", value = NULL) {
if(length(x) == 0)
return(x)
if(!is.numeric(x))
stop("'x' must be numeric")
if(!length(value))
value <- min(diff(sort(unique(x))))
if(type == "symmetric")
v <- x + runif(length(x), -value/2, value/2)
else if(type == "right")
v <- x + runif(length(x), 0, value)
else
stop("invalid type")
v
}
print.summary.rqss <-
function (x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"),
...)
{
cat("Formula:\n")
print(x$formula)
if (length(x$coef) > 0) {
cat("\nParametric coefficients:\n")
printCoefmat(x$coef, digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
}
cat("\n")
if (length(x$qsstab) > 0) {
cat("Approximate significance of qss terms:\n")
printCoefmat(x$qsstab, digits = digits, signif.stars = signif.stars,
has.Pvalue = TRUE, na.print = "NA", cs.ind = 1, ...)
}
cat("\n")
if (length(x$fidelity) > 0)
cat(" Quantile Fidelity at tau = ", x$tau, " is ", formatC(x$fidelity,
digits = 6, width = 11), "\n", sep = "")
cat(" Effective Degrees of Freedom = ", formatC(x$edf, digits = 5, width = 8,
flag = "-"), " Sample Size = ", x$n, "\n", sep = "")
invisible(x)
}
critval <- function(kappa, alpha = 0.05, rdf = 0){
# Hotelling tube critical value for uniform confidence bands
# This should agree to about 6 digits with the following call to locfit:
# crit(const = c(kappa,1), cov = 1-alpha,rdf = rdf)$crit.val
tube <- function(x,alpha,rdf){
if(rdf <= 0)
kappa * exp(-x^2/2)/pi + 2 * (1 - pnorm(x)) - alpha
else
kappa * (1+x^2/rdf)^(-rdf/2)/pi + 2 * (1 - pt(x,rdf)) - alpha
}
uniroot(tube,c(1,5),alpha = alpha, rdf = rdf)$root
}