\name{pfa} \alias{pfa} \title{ Factor analysis for compositional data } \description{ Computes the principal factor analysis of the input data which are transformed and centered first. } \usage{ pfa(x, factors, data = NULL, covmat = NULL, n.obs = NA, subset, na.action, start = NULL, scores = c("none", "regression", "Bartlett"), rotation = "varimax", maxiter = 5, control = NULL, ...) } \arguments{ \item{x}{ (robustly) scaled input data } \item{factors}{ number of factors } \item{data}{ default value is NULL } \item{covmat}{ (robustly) computed covariance or correlation matrix } % \item{transformation}{Either \sQuote{clr} or \sQuote{ilr}} \item{n.obs}{ number of observations } \item{subset}{ if a subset is used } \item{na.action}{ what to do with NA values } \item{start}{ starting values } \item{scores}{ which method should be used to calculate the scores } \item{rotation}{ if a rotation should be made } \item{maxiter}{ maximum number of iterations } \item{control}{ default value is NULL } \item{\dots}{ arguments for creating a list } } \details{ The main difference to usual implementations is that uniquenesses are nor longer of diagonal form. This kind of factor analysis is designed for centered log-ratio transformed compositional data. However, if the covariance is not specified, the covariance is estimated from isometric log-ratio transformed data internally, but the data used for factor analysis are backtransformed to the clr space (see Filzmoser et al., 2009). } \value{ \item{loadings }{A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings.} \item{uniquness }{uniquness} \item{correlation }{correlation matrix} \item{criteria}{The results of the optimization: the value of the negativ log-likelihood and information of the iterations used.} \item{factors }{the factors } \item{dof }{degrees of freedom} \item{method }{\dQuote{principal}} \item{n.obs }{number of observations if available, or NA} \item{call }{The matched call.} \item{STATISTIC, PVAL }{The significance-test statistic and p-value, if they can be computed} } \references{ C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter (2008): Statistical Data Analysis Explained. \emph{Applied Environmental Statistics with R}. John Wiley and Sons, Chichester, 2008. P. Filzmoser, K. Hron, C. Reimann, R. Garrett (2009): Robust Factor Analysis for Compositional Data. \emph{Computers and Geosciences}, \bold{35} (9), 1854--1861. } \author{ Peter Filzmoser, Karel Hron, Matthias Templ } \examples{ data(expenditures) x <- expenditures res0 <- pfa(x, factors=1, covmat="cov") ## the following produce always the same result: res1 <- pfa(x, factors=1, covmat="covMcd") res2 <- pfa(x, factors=1, covmat=covMcd(ilr(x))$cov) res3 <- pfa(x, factors=1, covmat=covMcd(ilr(x))) } \keyword{ multivariate }